СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

 

 

 

КАНАЛИЗАЦИЯ.

НАРУЖНЫЕ СЕТИ

И СООРУЖЕНИЯ

 

СНиП 2.04.03-85

 

ИЗДАНИЕ ОФИЦИАЛЬНОЕ

 

 

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

 

 

РАЗРАБОТАНЫ Союзводоканалпроектом (Г. М. Мирончик — руководитель темы; Д. А. Бердичевский, А. Е. Высота, Л. В. Ярославский) с участием ВНИИ ВОДГЕО, Донец­кого ПромстройНИИпроекта и НИНОСП им. Н. М. Герсеванова Госстроя СССР, НИИ коммунального водоснабжения и очистки воды Академии коммунального хозяйства им. К. Д. Памфилова и Гипрокоммунводоканала Минжилкомхоза РСФСР, ЦНИИЭП инженерного о6орудования Госгражданстроя, МосводоканалНИИпроекта и Мосинжпроекта Мосгорисполкома, Научно-исследовательского и конструкторско-технологического института городского хозяйства и УкркоммунНИИпроекта Минжилкомхоза УССР, Института механики и сейсмостойкости сооружений им. М. Т. Уразбаева Академии наук УзССР, Московского инженерно-строительного института им. В. В. Куйбышева Минвуза СССР, Ленинградского инженерно-строительного института Минвуза РСФСР.

 

ВНЕСЕНЫ Союзводоканалпроектом Госстроя СССР.

 

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтехнормированием Госстроя СССР

 

Антикоррозионная защита

канализационных коллекторов

 

Госстрой России направил органам исполнительной влсти республик в составе Российской Федерации, краев и областей, автономных округов, Москвы и Санкт-Петербурга письмо № ВА-235/13 от 09.08.93 следующего содержания.

К настоящему времени в стране эксплуатируются сотни километров подземных коммунальных канали­зационных тоннелей и трубопроводов.

Значительная часть из них выполнена из железо­бетона и асбестоцемента без специальной антикор­розионной защиты с внутренней стороны.

Анализ многочисленных аварий с подобными соо­ружениями, участившимися в последние годы, пока­зывает, что на 70 % они вызываются коррозией бетона и асбестоцемента в сводной части трубопроводов и коллекторов. Причиной разрушения являются аэробные тионовые бактерии, которые взаимодействуют с выделяющимся из сточных вод сероводородом. Образующаяся при этом серная кислота способна вызвать коррозию бетона, скорость которой достигает 10-20 мм в год.

Действующими нормативными документами по проектированию защиты от коррозии (СНиП 2.03.11-85) и по проектированию наружных сетей и соору­жений канализации (СНиП 2.04.03-85) не регламентируются биохимические факторы коррозии.

Между тем, уже имели место аварии коммуналь­ных коллекторов и трубопроводов сточных вод, в том числе в гг. Краснодаре, Уфе, Набережные Челны, Кур­ске, Москве.

Разрушения коллекторов из железобетона от би­охимической коррозии наблюдались в США, Фран­ции, Японии, где разработаны специальные национальные программы по ремонту действующих сооружений.

На состоявшемся в Москве первом межрегио­нальном совещании по проблемам надежности и защиты от коррозии коммунальных тоннелей в 1992 г. отмечалось тревожное положение, сложившееся с состоянием этих сооружений.

Учитывая значительную экологическую опасность огромные материальные затраты и социальные пос­ледствия аварии коммунальных тоннелей и трубопроводов из железобетона и асбестоцемента от коррозии, считаем необходимым поставить Вас в извест­ность, что указанные сооружения, предназначенные для транспортировки хозфекальных и промышлен­ных стоков, намечаемые к строительству, должны иметь защиту от коррозии.

До разработки специальных нормативных требо­ваний по проектированию, строительству, эксплуата­ции и защите от коррозии, в том числе диагностике состояния и ремонту коммунальных коллекторов и трубопроводов, рекомендуется решать эти вопросы с привлечением Тоннельной Ассоциации (107217, Москва, Садово-Спасская, 21. Тел-: 208-80-32, 208-80-34. Факс: (095) 267-90-05).

 

 

 

Государственный

комитет СССР

 

Строительные нормы и правила

 

 

СНиП 2.04.03-85

(Госстрой СССР)

Канализация.

Наружные сети и сооружения

 

Взамен

СНнП II-32-74

 

Настоящие нормы и правила должны соблюдаться при проектировании вновь строящихся и реконстру­ируемых систем наружной канализации постоянного назначения для населенных пунктов и объектов народного хозяйства.

При разработке проектов канализации надлежит руководствоваться „Основами водного законо­дательства Союза ССР и союзных республик", соб­людать „Правила охраны поверхностных вод от загрязнения сточными водами" и „Правила санитарной охраны прибрежных вод морей" Минводхоза СССР, Минрыбхоза СССР и Минздрава СССР, требования „Положения о водоохранных и прибрежных полосах малых рек страны" и „Инструкции о порядке согла­сования и выдачи разрешений на специальное водо­пользование" Минводхоза СССР, а также указания других нормативных документов, утвержденных или согласованных Госстроем СССР.

 

1. ОБЩИЕ УКАЗАНИЯ

 

1.1. Канализацию объектов надлежит проекти­ровать на основе утвержденных схем развития и размещения отраслей народного хозяйства и про­мышленности, схем развития и размещения производительных сил по экономическим районам и союзным республикам, генеральных, бассейновых и территориальных схем комплексного использования и охраны вод, схем и проектов районной планиров­ки и застройки городов и других населенных пунк­тов, генеральных планов промышленных узлов.

При проектировании необходимо рассматривать целесообразность кооперирования систем канализа­ции объектов независимо от их ведомственной при­надлежности, а также учитывать техническую, экономическую и санитарную оценки существую­щих сооружений, предусматривать возможность их использования и интенсификацию их работы.

Проекты канализации объектов необходимо раз­рабатывать, как правило, одновременно с проекта­ми водоснабжения с обязательным анализом балан­са водопотребления и отведения сточных вод. При этом необходимо рассматривать возможность ис­пользования очищенных сточных и дождевых вод для производственного водоснабжения и орошения.

1.2. В системе дождевой канализации должна быть обеспечена очистка наиболее загрязненной части поверхностного стока, образующегося в период выпадения дождей, таяния снега и мойки до­рожных покрытий, т. е. не менее 70 % годового сто­ка для селитебных территорий и площадок пред­приятий, близких к ним по загрязненности, и всего объема стока для площадок предприятий, террито­рия которых может быть загрязнена специфически­ми веществами с токсичными свойствами или зна­чительным количеством органических веществ.

1.3. Основные технические решения, принимае­мые в проектах, и очередность их осуществления должны быть обоснованы сравнением возможных вариантов. Технико-экономические расчеты следует выполнять по тем вариантам, достоинства и не­достатки которых нельзя установить без расчетов.

Оптимальный вариант должен определяться наи­меньшей величиной приведенных затрат с учетом сокращения трудовых затрат, расхода материаль­ных ресурсов, электроэнергии и топлива, а также исходя из санитарно-гигиенических и рыбохозяйственных требований.

1.4. При проектировании сетей и сооружений канализации должны быть предусмотрены прогрес­сивные технические решения, механизация трудоем­ких работ, автоматизация технологических процес­сов и максимальная индустриализация строительно-монтажных работ за счет применения сборных конст­рукций, стандартных и типовых изделий и деталей, изготавливаемых на заводах и в заготовительных мастерских.

1.5. Очистные сооружения производственной и дождевой канализации следует, как правило, разме­щать на территории промышленных предприятий.

1.6. При присоединении канализационных сетей промышленных предприятий к уличной или внутри-квартальной сети населенного пункта следует предусматривать выпуски с контрольными колодца­ми, размещаемыми за пределами предприятий.

Необходимо предусматривать устройства для за­мера расхода сбрасываемых сточных вод от каж­дого предприятия.

Объединение производственных сточных вод нескольких предприятий допускается после контроль­ного колодца каждого предприятия.

1.7. Условия и места выпуска очищенных сточ­ных вод и поверхностного стока в водные объекты следует согласовывать с органами по регулирова­нию использования и охране вод, исполнительными

 

 

Внесены Союзводоканалпроектом Госстроя СССР

 

Утверждены

постановлением

Государственного комитета СССР

по делам строительства

от 21 мая 1985 г. № 71

 

 

Срок

введения

в действие

1 января 1986 г.

 

комитетами местных Советов народных депутатов. органами, осуществляющими государственный сани­тарный надзор, охрану рыбных запасов, и другими органами а соответствии с законодательством Сою­за ССР и союзных республик, а места выпуска в судоходные водоемы, водотоки и моря — также с органами управления речным флотом союзных республик и Министерством морского флота.

1.8. При определении надежности действия сис­темы канализации и отдельных ее элементов необ­ходимо учитывать технологические, санитарно-гигие­нические и водоохранные требования.

В случае недопустимости перерывов в работе сис­темы канализации или отдельных ее элементов должны быть предусмотрены мероприятия, обеспе­чивающие бесперебойность их работы.

1.9. При аварии или ремонте одного сооружения перегрузка остальных сооружений данного назначе­ния не должна превышать 8—17 % расчетной их про­изводительности без снижения эффективности очист­ки сточных вод.

1.10. Санитарно-защитные зоны от канализацион­ных сооружений до границ зданий жилой застройки, участков общественных зданий и предприятий пи­щевой промышленности с учетом их перспективно­го расширения следует принимать:

от сооружений и насосных станций канализации населенных пунктов — по табл. 1;

от очистных сооружений и насосных станций производственной канализации, не расположенных на территории промышленных предприятий как при самостоятельной очистке и перекачке производственных сточных вод, так и при совместной их очистке с бытовыми в соответствии с СН 245-71 такими же, как для производств, от которых посту­пают сточные воды, но не менее указанных в табл. 1

 

2. РАСЧЕТНЫЕ РАСХОДЫ СТОЧНЫХ ВОД.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ

КАНАЛИЗАЦИОННЫХ СЕТЕЙ

 

УДЕЛЬНЫЕ РАСХОДЫ,

КОЭФФИЦИЕНТЫ НЕРАВНОМЕРНОСТИ

И РАСЧЕТНЫЕ РАСХОДЫ СТОЧНЫХ ВОД

 

2.1. При проектировании систем канализации на. селенных пунктов расчетное удельное среднесуточ­ное (за год) водоотведение бытовых сточных вод от жилых зданий следует принимать равным расчет. ному удельному среднесуточному (за год) водопотреблению согласно СНиП 2.04.02-84 без учета расхода воды на полив территорий и зеленых насаждений.

2.2. Удельное водоотведение для определения расчетных расходов сточных вод от отдельных жи­лых и общественных зданий при необходимости учета сосредоточенных расходов следует принимать согласно СНиП 2.04.01-85.

Таблица 1

 

 

 

Сооружения

Санитарно-защитная зона, м, при расчетной производительности сооружений, тыс. м3/сут

 

 

до 0,2

св. 0,2

до 5

св. 5

до 50

св. 50

до 280

 

Сооружения механической и биологической очистки с иловыми площадками для сброженных осадков, а также отдельно распо­ложенные иловые площадки

 

 

150

 

200

 

400

 

500

Сооружения механической и биологической очистки с термомеханической обработкой осадков в закрытых помещениях

 

100

150

300

400

Поля фильтрации

 

200

300

500

Земледельческие поля орошения

 

150

200

400

Биологические пруды

 

200

200

300

300

Сооружения с циркуляционными окислительными каналами

 

150

Насосные станции

 

15

20

20

30

 

Примечания: 1. Санитарно-защитные зоны канализационных сооружений производительностью свыше 280 тыс. м3/сут, а также при отступлении от принятой технологии очистки сточных вод и обработки осадка устанавливаются по согласованию с главными санитарно-эпидемиологическими управлениями министерств здравоохранения союзных республик.

2. Санитарно-защитные зоны, указанные в табл. 1, допускается увеличивать, но не более чем в 2 раза в случае расположения жилой застройки с подветренной стороны по отношению к очистным сооружениям или уменьшать не более чем на 25 % при на­личии благоприятной розы ветров.

3. При отсутствии иловых площадок на территории очистных сооружений производительностью свыше 0,2 тыс. м3/сут размер зоны следует сокращать на 30 %.

4. Санитарно-защитную зону от полей фильтрации площадью до 0,5 га и от сооружений механической и биологической очист­ки на биофильтрах производительностью до 50 м3/сут следует принимать 100 м.

5. Санитарно-защитную зону от полей подземной фильтрации производительностью менее 15 м3/сут следует принимать 15 м.

6. Санитарно-защитную зону от фильтрующих траншей и песчано-гравийных фильтров следует принимать 25 м, от септиков и фильтрующих колодцев — соответственно 5 и 8 м, от аэрационных установок на полное окисление с аэробной стабилиза­цией ила при производительности до 700 м3/сут 50 м.

7. Санитарно-защитную зону от сливных станций следует принимать 300 м.

8. Санитарно-защитную зону от очистных сооружений поверхностных вод с селитебных территорий следует принимать 100 м, от насосных станций 15 м, от очистных сооружений промышленных предприятий по согласованию с органами санитарно-эпидемиологической службы.

9. Санитарно-защитные зоны от шламонакопителей следует принимать в зависимости от состава и свойств шлама по согла­сованию с органами санитарно-эпидемиологической службы.

 

Таблица 2

 

Общий коэффициент неравномерности

Средний расход сточных вод, л/с

 

притока сточных вод

5

10

20

50

100

300

500

1000

5000

и более

 

Максимальный Кgen. max

 

 

2,5

 

2,1

 

1,9

 

1,7

 

1,6

 

1,55

 

1,5

 

1,47

 

1,44

Минимальный Kgen. min

 

0,38

0,45

0,5

0,55

0,59

0,62

0,66

0,69

0,71

 

Примечания: 1. Общие коэффициенты неравномерности притока сточных вод, приведенные в табл. 2, допускается принимать при количестве производственных сточных вод, не превышающем 45% общего расхода. При количестве производ­ственных сточных вод свыше 45% общие коэффициенты неравномерности следует определять с учетом неравномерности отведения бытовых и производственных сточных вод по часам суток согласно данным фактического притока сточных вод и эксплуатации аналогичных объектов.

2. При средних расходах сточных вод менее 5 л/с расчетные расходы надлежит определять согласно СНиП 2.04.01-85.

3. При промежуточных значениях среднего расхода сточных вод общие коэффициенты неравномерности следует определять интерполяцией.

 

2.3. Расчетные среднесуточные расходы производ­ственных сточных вод от промышленных и сельско­хозяйственных предприятий и коэффициенты нерав­номерности их притока следует определять на осно­ве технологических данных. При этом необходимо предусматривать рациональное использование воды за счет применения маловодных технологических процессов, водооборота повторного использования воды и т. п.

2.4. Удельное водоотведение в неканализованных районах следует принимать 25 л/сут на одного жителя.

2.5. Расчетный среднесуточный расход сточных вод в населенном пункте следует определять как сумму расходов, устанавливаемых по пп. 2.1-2.4.

Количество сточных вод от предприятий мест­ной промышленности, обслуживающих население, а также неучтенные расходы допускается принимать дополнительно в размере 5 % суммарного средне­суточного водоотведения населенного пункта.

2.6. Расчетные суточные расходы сточных вод следует определять как сумму произведений средне­суточных (за год) расходов сточных вод, опреде­ленных по п. 2.5, на коэффициенты суточной нерав­номерности, принимаемые согласно СНиП 2.04.02-84.

2.7. Расчетные максимальные и минимальные рас­ходы сточных вод следует определять как произве­дения среднесуточных (за год) расходов сточных вод, определенных по п. 2.5, на общие коэффициен­ты неравномерности, приведенные в табл. 2.

2.8. Расчетные расходы производственных сточ­ных вод промышленных предприятий следует при­нимать:

для наружных коллекторов предприятия, прини­мающих сточные воды от цехов, по максимальным часовым расходам;

для общезаводских и внеплощадочных коллекто­ров предприятия по совмещенному часовому гра­фику;

для внеплощадочного коллектора группы пред­приятий по совмещенному часовому графику с учетом времени протекания сточных вод по коллек­тору.

2.9. При разработке схем, перечисленных в п. 1.1. удельное среднесуточное (за год) водоотведение до­пускается принимать по табл. 3.

Объем сточных вод от промышленных и сельско­хозяйственных предприятий должен определяться на основании укрупненных норм или имеющихся проектов-аналогов.

 

Таблица 3

 

 

 

Объекты канализования

Удельное среднесуточное (за год) водоотведение на одного жителя

в населенных пунктах, л/сут

 

 

до 1990 г.

до 2000 г.

 

Города

 

500

 

550

Сельские населенные пункты

 

125

150

 

Примечания: 1. Удельное среднесуточное водоотведение допускается изменять на 10—20 % в зависимости от климатических и других местных условий и степени благоустройства.

2. При отсутствии данных о развитии промышленности за пределами 1990 г. допускается принимать дополнитель­ный расход сточных вод от предприятий в размере 25 % расхода, определенного по табл. 3.

 

2.10. Самотечные линии, коллекторы и каналы, а также напорные трубопроводы бытовых и произ­водственных сточных вод следует проверять на про­пуск суммарного расчетного максимального рас­хода по пп. 2.7 и 2.8 и дополнительного притока поверхностных и грунтовых вод в периоды дождей и снеготаяния, неорганизованно поступающего в сети канализации через неплотности люков колод­цев и за счет инфильтрации грунтовых вод. Величи­ну дополнительного притока qad, л/с, следует определять на основе специальных изысканий или данных эксплуатации аналогичных объектов, а при их отсутствии — по формуле

 

                                              (1)

 

где L — общая длина трубопроводов до рассчи­тываемого сооружения [створа трубо­проводов) , км;

тd величина максимального суточного ко­личества осадков, мм, определяемая согласно СНиП 2.01.01-82.

Проверочный расчет самотечных трубопроводов и каналов поперечным сечением любой формы на пропуск увеличенного расхода должен осуществлять­ся при наполнении 0,95 высоты.

 

РАСЧЕТНЫЕ РАСХОДЫ ДОЖДЕВЫХ ВОД

 

2.11. Расходы дождевых qr, л/с, следует опре­делять по методу предельных интенсивностей по формуле

 

                                                (2)

 

где zmid — среднее значение коэффициента, харак­теризующего поверхность бассейна сто­ка. определяемое согласно п. 2.17;

А, п — параметры,  определяемые  согласно п. 2.12;

F — расчетная площадь стока, га, определя­емая согласно п. 2.14;

tr — расчетная продолжительность дождя, равная продолжительности протекания поверхностных вод по поверхности и трубам до расчетного участка, мин, и определяемая согласно п. 2.15.

Расчетный расход дождевых вод для гидравличес­кого расчета дождевых сетей qcal, л/с, следует определять по формуле

 

                                       (3)

 

где b коэффициент, учитывающий заполнение свободной емкости сети в момент воз­никновения напорного режима и опреде­ляемый по табл. 11.

 

Примечания: 1. При величине расчетной продолжи­тельности протекания дождевых вод. меньшей 10 мин, в формулу (2) следует вводить поправочный коэффициент рваный 0,8 при tr = 5 мин и 0,9 при tr  = 7 мин.

2. При большом заглублении начальных участков коллекторов дождевой канализации следует учитывать увеличение их пропускной способности за счет напора, создава­емого подъемом уровни воды в колодцах.

 

2.12. Параметры А и п надлежит определять по результатам обработки многолетних записей само­пишущих дождемеров, зарегистрированных в дан­ном конкретном пункте. При отсутствии обработан­ных данных допускается параметр А определять по формуле

 

                                              (4)

 

где q20 интенсивность дождя, л/с на 1 га, для данной местности продолжительностью 20 мин при Р = 1 год, определяемая по черт. 1;

п — показатель степени, определяемый по табл. 4;

тr средние количество дождей за год, принимаемое по табл. 4;

Р — период однократного превышения рас­четной интенсивности дождя, принима­емый по п. 2.13;

g — показатель степени, принимаемый по табл. 4.

 

Черт. 1. Значения величии интенсивности дождя q20

 

Таблица 4

 

 

Район

Значение n

при

 

mr

 

g

 

Р ³ 1

Р < 1

 

 

 

Побережья Белого и Баренцева морей

 

0,4

 

0,35

 

130

 

1,33

Север европейской части СССР и Западной Сибири

0,62

0,48

120

1,33

Равнинные области запада и центра европейской части СССР

0,71

0,59

150

1,54

Равнинные области Украины

0,71

0,64

110

1,54

Возвышенности европейской части СССР. западный склон Урала

0,71

0,59

150

1,54

Восток Украины, низовье Волги и Дона, Южный Крым

0,67

0,57

60

1,82

Нижнее Поволжье

0,66

0,66

50

2

Наветренные склоны возвышенностей европейской части СССР и Северное Предкавказье

0,7

0,66

70

1,54

Ставропольская возвышенность, северные предгорья Большого Кавказа, северный склон Большого Кавказа

0,63

0,56

100

1,82

Южная часть Западной Сибири, среднее течение р. Или, район оз. Але-Куль

0,72

0,58

80

1,54

Центральный и Северо-Восточный Казахстан, предгорья Алтая

0,74

0,66

80

1,82

Северные склоны Западных Саян, Заилийского Алатау

0,57

0,57

80

1,33

Джунгарский Алатау, Кузнецкий Алатау, Алтай

0,61

0,48

140

1,33

Северный склон Западных Саян

0,49

0,33

100

1,54

Средняя Сибирь

0,69

0,47

130

1,54

Хребет Хамар-Дабан

0,48

0,35

130

1,82

Восточная Сибирь

 

0,6

0,52

90

1,54

Бассейны Шилки и Аргуни, долина Среднего Амура

0,65

0,54

100

1,54

Бассейны Колымы и рек Охотского моря, северная часть Нижнеамурской низменности

0,36

0,48

100

1,54

Побережье Охотского моря, бассейны рек Берингова моря, центр и запад Камчатки

0,35

0,31

80

1,54

Восточное побережье Камчатки южнее 56° с. ш.

0,28

0,26

110

1,54

Побережье Татарского пролива

0,35

0,28

110

1,54

Район оз. Ханка

0,65

0,57

90

1,54

Бассейны рек Японского моря, о. Сахалин, Курильские о-ва

0,45

0,44

110

1,54

Юг Казахстана, равнина Средней Азии и склоны гор до 1500 м, бассейн оз. Иссык-Куль до 2500 м

0,44

0,4

40

1,82

Склоны гор Средней Азии на высоте 1500-3000 м

0,41

0,37

40

1,54

Юго-Западная Туркмения

0,49

0,32

20

1,54

Черноморское побережье и западный склон Большого Кавказа до Сухуми

0,62

0,58

90

1,54

Побережье Каспийского моря и равнина от Махачкалы до Баку

0,51

0,43

60

1,82

Восточный склон Большого Кавказа, Кура-Араксинская низменность до 500 м

0,58

0,47

70

1,82

Южный склон Большого Кавказа выше 1500 м, южный склон выше 500 м, ДагАССР

0,57

0,52

100

1,54

Побережье Черного моря ниже Сухуми, Колхидская низменность, склоны Кавказа до 2000 м

0,54

0,5

90

1,33

Бассейн Куры, восточная часть Малого Кавказа, Талышский хребет

0,63

0,52

90

1,33

Северо-западная и центральная части Армении

0,67

0,53

100

1,33

Ленкорань

 

0,44

0,38

171

2,2

 

2.13. Период однократного превышения расчетной интенсивности дождя необходимо выбирать в зави­симости от характера объекта канализования, усло­вий расположения коллектора с учетом последствий, которые могут быть вызваны выпадением дождей, превышающих расчетные, и принимать по табл. 5 и б или определять расчетом в зависимости от усло­вий расположения коллектора, интенсивности дож­дей, площади бассейна и коэффициента стока по предельному периоду превышения.

При проектировании дождевой канализации у особых сооружений (метро, вокзалов, подземных переходов и др.), а также для засушливых районов, где значение q20 менее 50 л/(с×га), при Р, равном единице, период однократного превышения расчет­ной интенсивности дождя следует определять только расчетом с учетом предельного периода превышения расчетной интенсивности дождя, указанного в табл. 7. При этом периоды однократного превышения расчетной интен­сив­нос­ти дождя, определенные рас­четом, не должны быть менее указанных в табл. 5 и 6.

При определении периода однократного превы­шения расчетной интенсивности дождя расчетом сле­дует учитывать, что при предельных периодах одно­кратного превышения, указанных в табл. 7, коллек­тор дождевой канализации должен пропускать лишь часть расхода дождевого стока, остальная часть ко­торого временно затопляет проезжую часть улиц и при наличии уклона стекает по ее лоткам, при этом высота затопления улиц не должна вызывать затоп­ления подвальных и полуподвальных помещений; кроме того, следует учитывать возможный сток с бассейнов, расположенных за пределами населенно­го пункта.

 

Таблица 5

 

 

Условия расположения коллекторов

Период однократного превышения расчетной интенсивности дождя Р, годы,

для населенных пунктов при значениях q20

 

местного значения

на магистральных улицах

до 60

св. 60

до 80

св. 80

до 120

св. 120

 

Благоприятные

и средние

 

 

Благоприятные

 

0,330,5

 

0,331

 

0,51

 

12

Неблагоприятные

 

Средние

0,51

11,5

12

23

Особо неблагоприятные

Неблагоприятные

23

23

35

510

 

 

Особо неблагоприятные

35

35

510

1020

 

Примечания: 1. Благоприятные условия расположения коллекторов:

бассейн площадью не более 150 га имеет плоский рельеф при среднем уклоне поверхности 0,005 и менее;

коллектор проходит по водоразделу или в верхней части склона на расстоянии от водораздела не более 400 м,

2. Средние условия расположения коллекторов:

бассейн площадью свыше 150 га имеет плоский рельеф с уклоном 0,005 м и менее;

коллектор проходит е нижней части склона по тальвегу с уклоном склонов 0,02 м и менее, при этом площадь бассейна не превышает 150 га.

3. Неблагоприятные условия расположения коллекторов:

коллектор проходит в нижней части склона, площадь бассейна превышает 150 га;

коллектор проходит по тальвегу с крутыми склонами при среднем уклоне склонов свыше 0,02.

4. Особо неблагоприятные условия расположения коллекторов: коллектор отводит воду из замкнутого пониженного места (котловины).

 

 

Таблица 6

 

 

Результат кратковре­менного переполнения сети

Период однократного превышения расчетной интенсивности дождя Р, годы, для территории промышленных предприятий при значениях q20

 

 

до 70

св. 70 до 100

 

св. 100

 

Технологические процессы предприятия:

    не нарушаются

 

 

 

0,330,5

 

 

 

0,51

 

 

2

    нарушаются

 

0,51

12

35

 

Примечание. Для предприятий, расположенных в замкнутой котловине, период однократного превышения расчетной интенсивности дождя следует определять расче­том или принимать рваным не менее чем 5 годам.

 

 

Таблица 7

 

Характер бассейна, обслуживаемого коллектором

Значение предельного периода превышения интенсивности дождя Р, годы, в зависимости от условий

расположения коллектора

 

благо-приятных

средних

неблаго-приятных

особо неблаго-приятных

 

 

Территории кварта­лов и проезды мест­ного значения

 

 

10

 

10

 

25

 

50

Магистральные ули­цы

 

10

25

50

100

 

2.14. Расчетную площадь стока для рассчитывае­мого участка сети необходимо принимать равной всей площади стока или части ее, дающей макси­мальный расход стока.

В тех случаях, когда площадь стока коллектора составляет 500 га и более, в формулы (2) и (3) следует вводить поправочный коэффициент К, учитывающий неравномерность выпадения дождя по площади и принимаемый по табл. 8.

 

Таблица 8

 

Площадь стока, га

800

 

1000

2000

4000

6000

8000

10 000

Значение коэффициента К

0,95

0,90

0,85

0,8

0,7

0,6

0,55

 

Расчетные расходы дождевых вод с незастроен­ных площадей водосборов свыше 1000 га, не входя­щих в территорию населенного пункта, следует определять по соответствующим нормам стока для расчета искусственных сооружений автомобильных до­рог согласно ВСН 63-76 Минтрансстроя.

2.15. Расчетную продолжительность протекания дождевых вод по поверхности и трубам tr, мин, следует принимать по формуле

 

                                                          (5)

 

где tcon — продолжительность протекания дожде­вых вод до уличного лотка или при на­личии дождеприемников в пределах квартала до уличного коллектора (вре­мя поверхностной концентрации), мин, определяемая согласно п. 2.16;

tcan то же, по уличным лоткам до дожде­приемника (при отсутствии их в пре­делах квартала), определяемая по формуле (6);

tp — то же, по трубам до рассчитываемого сечения, определяемая по формуле (7),

2.16. Время поверхностной концентрации дожде­вого стока следует определять по расчету или прини­мать а населенных пунктах при отсутствии внутри-квартальных закрытых дождевых сетей равным 5—10 мин или при наличии их равным 3—5 мин.

При расчете внутриквартальной канализационной сети время поверхностной концентрации надлежит принимать равным 2—3 мин.

Продолжительность протекания дождевых вод по уличным лоткам tcan, мин, следует определять по формуле

 

                                           (6)

 

где lcan — длина участков лотков, м;

vcan — расчетная скорость течения на участке, м/с.

 

Продолжительность протекания дождевых вол по трубам до рассчитываемого сечения tp, мин, следует определять по формуле

 

                                               (7)

 

где lp — длина расчетных участков коллектора, м;

vp — расчетная скорость течения на участке, м/с.

 

2.17. Среднее значение коэффициента стока zmid следует определять как средневзвешенную величину в зависимости от коэффициентов z, характеризую­щих поверхность и принимаемых по табл. 9 и 10.

 

Таблица 9

 

Поверхность

Коэффициент z

Кровля зданий и сооружений, асфальто­бетонные покрытия дорог

Принимается по табл. 10

Брусчатые мостовые и черные щебе­ночные покрытия дорог

0,224

Булыжные мостовые

0,145

Щебеночные покрытия, не обработанные вяжущими

0,125

Гравийные садово-парковые дорожки

0,09

Грунтовые поверхности (спланирован­ные)

0,064

Газоны

0,038

 

Примечание. Указанные значения коэффициента z допускается уточнять по местным условиям на основании соответствующих исследований.

 

Таблица 10

 

 

Параметр А

Коэффициент z для водонепроницаемых поверхностей

 

300

0,32

400

0,30

500

0,29

600

0,28

700

0,27

800

0,26

1000

0,25

1200

0,24

1500

0,23

 

2.18. При расчете стока с бассейнов площадью свыше 50 га с разным характером застройки или с резко различными уклонами поверхности земли следует производить проверочные определения рас­ходов дождевых вод с разных частей бассейна и наибольший из полученных расходов принимать за расчетный. При этом, если расчетный расход дожде­вых вод с данной части бассейна окажется меньше расхода, по которому рассчитан коллектор на выше­лежащем участке, следует расчетный расход для данного участка коллектора принимать равным рас­ходу на вышележащем участке.

Территории садов и парков, не оборудованные дождевой закрытой или открытой канализацией, в расчетной величине площади стока и при опреде­лении коэффициента z не учитываются. Если терри­тория имеет уклон поверхности 0,008—0,01 и более в сторону уличных проездов, то в расчетную пло­щадь стока необходимо включать прилегающую к проезду полосу шириной 50—100 м.

Озелененные площади внутри кварталов (полосы бульваров, газоны и т. п.) следует включать в рас­четную величину площади стока и учитывать при оп­ределении коэффициента поверхности бассейна стока z.

2.19. Значения коэффициента b следует опреде­лять по табл. 11.

 

Таблица 11

 

Показатель степени п

 

£ 0,4

0,5

0,6

³ 0,7

Значение коэффициента b

 

0,8

0,75

0,7

0,65

 

Примечания: 1. При уклонах местности 0,01—0,03 указанные значения коэффициента b следует увеличивать на 10—15 % и при уклонах местности свыше 0,03 принимать равными единице.

2. Если общее число участков на дождевом коллекторе или на притоке менее 10, то значение b при всех уклонах допускается уменьшать на 10 % при числе участков 410 и на 15 % при числе участков менее 4.

 

 

РАСЧЕТНЫЕ РАСХОДЫ СТОЧНЫХ ВОД

ПОЛУРАЗДЕЛЬНОЙ СИСТЕМЫ КАНАЛИЗАЦИИ

 

2.20. Расчетный расход смеси сточных вод qmix, л/с, в общесплавных коллекторах полураздельной системы канализации следует определять по формуле

 

                                          (8)

 

где qcit максимальный расчетный расход произ­водственных и бытовых сточных вод с учетом коэффициента неравномерности, л/с;

åqlim — максимальный, подлежащий очистке расход дождевого стока, равный сумме предельных расходов дождевых вод qlim,  подаваемых в общесплавной кол­лектор от каждой разделительной камеры, расположенной до рассчитываемого участка, л/с.

Расход стока от предельного дождя qlim следует определять согласно п. 2.11 при периоде однократ­ного  превышения  интенсивности  предельного дождя Plim = (0,050,1) года, обеспечивающем отведение на очистку не менее 70 % годового объе­ма поверхностных сточных вод.

Указанные значения Plim допускается уточнять по местным условиям.

2.21. Предельный расход дождевых вод qlim, подаваемый в общесплавной коллектор полураз­дельной системы канализации от разделительной камеры, допускается определять путем расчета стока дождевых вод согласно п. 2.12 при значении коэффициента b = 1 по существующей или запроек­тированной дождевой канализационной сети при предельном, не сбрасываемом в водоем дожде, пользуясь метеорологическими параметрами для дождей частой повторяемости. Предельный расход дождевых вод следует определять по формуле

 

                                                     (9)

 

где Кdiv коэффициент, показывающий часть рас­хода дождевых вод, направляемую на очистку, и определяемый по п. 2.22;

qr — расход подходящих к разделительной камере дождевых вод, определяемый согласно п. 2.11 без учета коэффи­циента b.

2.22. Значения коэффициента разделения Кdiv следует определять по табл. 12 в зависимости от отношения

 

                                    

 

где mr, g параметры, определяемые по п. 2.12.

 

Таблица 12

 

 

Показатель

Значения коэффициента Kdiv при Kdiv, равных

 

степени nlim

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

 

 

0,75

 

0,02

 

0,04

 

0,07

 

0,1

 

0,15

 

0,19

 

0,24

 

0,3

 

0,36

 

0,42

0,5

0,025

0,05

0,08

0,12

0,16

0,21

0,26

0,31

0,37

0,43

0,3

 

0,03

0,06

0,09

0,13

0,18

0,22

0,27

0,32

0,38

0,43

 

Примечание. Принятые в табл. 12 значения Kdiv справедливы для продолжительности протока tr, равной 20 мин, а также разности показателей степени в формуле (2) п nlim = 0 при любой продолжитель-ности протока.

В тех случаях, когда расчетная продолжительность протока до разделительной камеры tr ¹ 20 мин и разность показателей степени n ¹ 0, к значению коэффициента разделения, принятому по табл. 12, следует вводить поправочный коэффициент, определяемый по табл. 13 в зависимости от продолжительности протока до разделительной камеры и разности показателей сте­пени п.                                                                                                     

 

 

Таблица 13

 

Разность показателей степени

n nlim

Значение поправочного коэффициента к коэффициенту

разделения Kdiv при продолжительности протока tr, мин

 

 

10

30

60

90

120

 

0,03 и менее

 

1

 

1

 

1

 

1,1

 

1,1

0,07

0,9

1

1,1

1,2

1,2

0,15

0,9

1,1

1,2

1,3

1,3

0,2

0,8

1,1

1,4

1,6

1,7

0,3

 

0,8

1,2

1,6

1,9

2,1

 

2.23. Расчетный расход смеси сточных вод на участках общесплавной канализационной сети до первого ливнеспуска следует определять как сумму расходов производственно-бытовых сточных вод qcit с учетом коэффициента неравномерности и дождевых вод от дождя расчетной интенсив­ности.

2.24. Расчетный расход смеси сточных вод на участках общесплавной канализационной сети после первого и каждого последующего ливнеспуска следует определить как сумму расходов производ­ственно-бытовых сточных вод с учетом коэффици­ента неравномерности и дождевых вод от дождя расчетной интенсивности qqen, л/с, по формуле

 

                                             (10)

 

где qcit расход производственных и бытовых сточных вод, л/с;

qr расход дождевых вод с бассейна стока между последним ливнеспуском и рас­четным сечением, л/с.

 

2.25. Общесплавные коллекторы полураздельной системы канализации следует рассчитывать на про пуск расходов при полном их заполнении.

Участки общесплавных коллекторов полураздель­ной системы канализации, где расход производст­венно-бытовых сточных вод qcit превышает 10 л/с, следует проверять на условия пропуска этого рас­хода, при этом наименьшие скорости следует прини­мать по табл. 14 при наполнении, равном 0,3.

 

Таблица 14

 

Глубина слоя воды в трубопроводах общесплавной сети при расчетных расходах в сухую погоду, см

 

 

Наименьшая скорость течения сточных вод, м/с

 

31 40

 

1

41 60

1,1

61 100

1,2

101 150

1,3

Св. 150

 

1,4

 

 

РЕГУЛИРОВАНИЕ СТОКА ДОЖДЕВЫХ ВОД

 

2.26. Регулирование стока дождевых вод следует предусматривать с целью уменьшения и выравнивания расхода, поступающего на очистные сооружения или насосные станции. Регулирование стока следует также применять перед отводными коллекторами большой протяженности для уменьшения диаметров труб.

Для регулирования стока дождевых вод следует устраивать пруды или резервуары, а также исполь­зовать укрепленные овраги и существующие пруды, не являющиеся источниками питьевого водоснабжения, непригодные для купания и спорта и не исполь­зуемые в рыбохозяйственных целях.

2.27. В регулирующие пруды и резервуары, как правило, следует направлять через разделительные камеры лишь дождевые воды при возникновении больших расходов стока. При этом все талые воды и сток от часто повторяющихся дождей необходимо пропускать в обход пруда.

В случае целесообразности использования ре­гулирующего пруда как очистного сооружения в него должен быть направлен весь поверхностный сток, при этом следует предусматривать специаль­ное оборудование для удаления осадка, мусора и нефтепродуктов.

2.28. Период однократного превышений расчетной интенсивности дождей для водосбросов и выпусков в пруды следует устанавливать для каждого объекта с учетом местных условий и возможных последствии в случае выпадения дождей с интенсивностью выше расчетной.

 

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ

КАНАЛИЗАЦИОННЫХ СЕТЕЙ

 

2.29. Гидравлический расчет канализационных са­мотечных трубопроводов (лотков, каналов) надле­жит производить на расчетный максимальный се­кундный расход сточных вод по таблицам и графи­кам, составленным по формуле

 

                                                        (11)

 

где v скорость движения жидкости, м/с;

С коэффициент, зависящий от гидравли­ческого радиуса и шероховатости смо­ченной поверхности канала или трубо­провода и определяемый по формуле

 

                                                               (12)

 

здесь

n1 коэффициент шероховатости, принимае­мый для самотечных коллекторов круг­лого сечения 0,014, для напорных трубопроводов — 0,013;

R — гидравлический радиус, м;

i — гидравлический уклон.

Гидравлический уклон i для самотечных трубо­проводов, лотков и каналов допускается опреде­лять по формуле

 

                                                               (13)

 

где g — ускорение силы тяжести, м/с2;

l — коэффициент сопротивления трению по длине, который следует определять по формуле, учитывающей различную сте­пень турбулентности потока:

 

                                             (14)

 

здесь D эквивалентная шероховатость, см;

R гидравлический радиус, см;

a2 коэффициент, учитывающий характер шероховатости труб и каналов;

Re число Рейнольдса.

Значения D и а2 следует принимать по табл. 15.

 

Таблица 15

 

Трубы и каналы

 

D, см

а2

 

Трубы:

    бетонные и железобетонные

 

 

0,2

 

 

100

    керамические

0,135

90

    чугунные

0,1

83

    стальные

0,08

79

    асбестоцементные

0,06

73

Каналы:

    из бута, тесаного камня

 

0,635

 

150

    кирпичные

0,315

110

    бетонные и железобетонные монолитные

0,3

120

    то же, сборные (заводского изготов­ления)

 

0,08

50

 

2.30. Гидравлический расчет канализационных напорных трубопроводов надлежит производить согласно СНиП 2.04.02-84.

2.31. Гидравлический расчет напорных илопроводов, транспортирующих сырые и сброженные осад­ки. а также активный ил, следует производить с уче­том режима движения, физических свойств и осо­бенностей состава осадков.

При влажности 99 % и более осадок подчиняется законам движения сточной жидкости.

2.32. Гидравлический уклон i при расчете напор­ных илопроводов следует определять по формуле

 

                        (15)

 

где rmud   влажность осадка, %;

l коэффициент сопротивления трению по длине, определяемый по формуле

 

                                     (16)

 

скорость движения ила, м/с;

D — диаметр трубопровода, см.

Для илопроводов диаметром 150 мм значение l следует увеличивать на 0,01.

 

НАИМЕНЬШИЕ ДИАМЕТРЫ ТРУБ

 

2.33. Наименьшие диаметры труб самотечных се­тей следует принимать, мм:

для уличной сети 200, для внутриквартальной сети бытовой и  производственной  канализа­ции 150;

для дождевой и общесплавной уличной се­ти 250, внутриквартальной 200.

Наименьший диаметр напорных илопроводов 150 мм.

 

Примечания: 1. В населенных пунктах с расходом до 300 м3/сут для внутриквартальной и уличной сетей до­пускается применение труб диаметром 150 мм.

2. Для производственной канализации при соответст­вующем обосновании допускается применение груб диамет­ром менее 150 мм.

 

РАСЧЕТНЫЕ СКОРОСТИ И НАПОЛНЕНИЯ

ТРУБ И КАНАЛОВ

 

2.34. Во избежание заиливания канализационных сетей расчетные скорости движения сточных вод следует принимать а зависимости от степени напол­нения труб и каналов и крупности взвешенных ве­ществ, содержащихся в сточных водах.

При наибольшем расчетном наполнении труб в сети бытовой и дождевой канализации наименьшие скорости следует принимать по табл. 16.

 

Таблица 16

 

Диаметр, мм

Скорость vmin, м/с, при наполнении H/D

 

 

0,6

0,7

0,75

0,8

 

150250

 

0,7

 

 

 

300400

0,8

-

450500

0,9

600800

1

900

1,15

10001200

1,15

1500

1,3

Св. 1500

 

1,5

 

Примечания: 1. Для производственных сточных вод наименьшие скорости следует принимать в соответст­вии с указаниями по строительному проектированию пред­приятий отдельных отраслей промышленности или по эксплуатационным данным.

2. Для производственных сточных вод, близких по ха­рактеру взвешенных веществ к бытовым, наименьшие ско­рости надлежит принимать как для бытовых сточных вод.

3. Для дождевой канализации при Р = 0,33 года наимень­шую скорость следует принимать 0,6 м/с.

 

2.35. Минимальную расчетную скорость движения осветленных или биологически очищенных сточ­ных вод в лотках и трубах допускается принимать 0,4 м/с.

2.36. Наибольшую расчетную скорость движения сточных вод следует принимать, м/с: для металли­ческих труб — 8, для неметаллических — 4, для дож­девой канализации — соответственно 10 и 7.

2.37. Расчетную скорость движения неосветлен­ных сточных вод в дюкерах необходимо принимать не менее 1 м/с, при этом в местах подхода сточных вод к дюкеру скорости должны быть не более скоростей в дюкере.

2.38. Наименьшие расчетные скорости движения сырых и сброженных осадков, а также уплотнен­ного активного ила в напорных илопроводах сле­дует принимать по табл. 17.

2.39. Наибольшие скорости движения дождевых и допускаемых к спуску в водоемы производст­венных сточных вод в каналах следует принимать по табл. 18.

 

Таблица 17

 

 

Влажность

vmin, м/с, при

 

 

Влажность

vmin, м/с, при

осадка, %

D =150 200 мм

D = 250 400 мм

осадка, %

D =150 200 мм

D = 250 400 мм

 

98

 

0,8

 

0,9

 

93

 

1,3

 

1,4

97

0,9

1,0

92

1,4

1,5

96

1,0

1,1

91

1,7

1,8

95

1,1

1,2

90

1,9

2,1

94

 

1,2

1,3

 

 

 

 

Таблица 18

 

 

Грунт или тип крепления

Наибольшая скорость движения

в каналах, м/с, при глубине потока

от 0,4 до 1 м

 

Крепление бетонными плитами

 

4

Известняки, песчаники средние

4

Одерновка:

    плашмя

 

1

    в стенку

1,6

Мощение:

    одинарное

 

2

    двойное

 

33,5

 

Примечание. При глубине патока менее 0,4 м зна­чения скоростей движения сточных вод следует принимать с коэффициентом 0,85, при глубине свыше 1 м — с коэффи­циентом 1,25.

 

 

2.40. Расчетное наполнение трубопроводов и каналов с поперечным сечением любой формы надле­жит принимать не более 0,7 высоты.

Расчетное наполнение каналов прямоугольного поперечного сечения допускается принимать не бо­лее 0,75 высоты.

Для трубопроводов дождевой и общесплавной систем водоотведения следует принимать полное расчетное наполнение.

 

УКЛОНЫ ТРУБОПРОВОДОВ, КАНАЛОВ

И ЛОТКОВ

 

2.41. Наименьшие уклоны трубопроводов и каналов следует принимать в зависимости от допустимых минимальных скоростей движения сточных вод.

Наименьшие уклоны трубопроводов для всех систем канализации следует принимать для труб диаметрами: 150 мм 0,008, 200 мм 0,007.

В зависимости от местных условий при соот­ветствующем обосновании для отдельных участков сети допускается принимать уклоны для труб диаметрами: 200 мм 0,005, 150 мм 0,007.

Уклон присоединения от дождеприемников сле­дует принимать 0,02.

2.42. В открытой дождевой сети наименьшие ук­лоны лотков проезжей части, кюветов и водоотвод­ных канав следует принимать по табл. 19.

 

Таблица 19

 

Лотки, кюветы, канавы

 

Наименьший уклон

 

Лотки проезжей части при:

    покрытии асфальтобетонном

 

 

 

0,003

    брусчатом или щебеночном по­крытии

 

0,004

    булыжной мостовой

 

0,005

Отдельные лотки и кюветы

 

0,005

Водоотводные канавы

 

0,003

 

2.43. Наименьшие размеры кюветов и канав тра­пецеидального сечения следует принимать: ширину по дну 0,3 м, глубину 0,4 м.

 

3. СХЕМЫ И СИСТЕМЫ КАНАЛИЗАЦИИ

 

СХЕМЫ И СИСТЕМЫ КАНАЛИЗАЦИИ

НАСЕЛЕННЫХ ПУНКТОВ

 

3.1. Канализование населенных пунктов следует предусматривать по системам: раздельной — полной или неполной, полураздельной, а также комбиниро­ванной.

Отведение поверхностных вод по открытой сис­теме водостоков допускается при соответствую­щем обосновании и согласовании с органами санитарно-эпидемиологической службы, по регулиро­ванию и охране вод, а также с органами охраны рыб­ных запасов.

3.2. Выбор системы канализации следует произ­водить с учетом требований к очистке поверхност­ных сточных вод, климатических условий, рельефа местности и других факторов.

В районах с интенсивностью дождей q20 менее 90 л/с на 1 га следует рассматривать возможность применения полураздельной системы канализации.

 

СИСТЕМЫ КАНАЛИЗАЦИИ

МАЛЫХ НАСЕЛЕННЫХ ПУНКТОВ (ДО 5000 ЧЕЛ.)

И ОТДЕЛЬНО СТОЯЩИХ ЗДАНИЙ

 

3.3. Канализацию малых населенных пунктов следует предусматривать, как правило, по неполной раздельной системе.

3.4. Для малых населенных пунктов следует пре­дусматривать, как правило, централизованные схе­мы канализации для одного или нескольких насе­ленных пунктов, отдельных групп зданий и производственных зон.

Централизованные схемы канализации следует проектировать объединенными для жилых и произ­водственных зон, исключая навозсодержащие сточ­ные воды, при этом объединение производственных сточных вод с бытовыми должно производиться с учетом п. 3.18.

Устройство централизованных схем раздельно для жилой и производственной зон допускается при технико-экономическом обосновании.

3.5. Децентрализованные схемы канализации до­пускается предусматривать:

при отсутствии опасности загрязнения исполь­зуемых для водоснабжения водоносных горизон­тов;

при отсутствии централизованной канализации в существующих или реконструируемых населенных пунктах для объектов, которые должны быть кана­лизованы в первую очередь (больниц, школ, детс­ких садов и яслей, административно-хозяйственных зданий, отдельных жилых домов промышленных предприятий и т. п.), а также для первой стадии строительства населенных пунктов при расположе­нии объектов канализования на расстоянии не ме­нее 500 м:

при необходимости канализования групп или отдельных зданий.

3.6. Для очистки сточных вод при централизован­ной схеме канализации следует применять сооруже­ния:

естественной биологической очистки (поля филь­трации, биологические пруды);

искусственной биологической очистки (аэротенки и биофильтры различных типов, циркуляцион­ные окислительные каналы);

физико-химической очистки для вахтовых посел­ков с временным пребыванием персонала и для других объектов с периодическим пребыванием людей.

3.7. Для очистки сточных вод при децентрализо­ванной схеме канализации следует применять фильтрующие колодцы, поля подземной фильтра­ции, песчано-гравийные фильтры, фильтрующие траншеи, аэротенки на полное окисление, соору­жения физико-химической очистки для объектов периодического функционирования (пионерских лагерей, туристских баз и т. п.).

3.8. Для очистки сточных вод малых населенных пунктов целесообразно применение установок за­водского изготовления по ГОСТ 25298—82.

3.9. Для отдельно стоящих зданий при расходе бытовых сточных вод до 1 м3/сут допускается устройство люфт-клозетов или выгребов.

3.10. Обработку сточных вод прачечных, загряз­ненных синтетическими поверхностно-активными веществами  (СПАВ), допускается производить совместно с бытовыми сточными водами при отно­шении их количеств 1:9. Для банно-прачечных сточ­ных вод это отношение следует принимать 1:4, для банных — 1:1. При обосновании допускается при­менение регулирующих резервуаров.

При большом количестве банно-прачечных сточ­ных вод следует предусматривать их обработку для обеспечения допустимой концентрации СПАВ.

3.11. По подаче сточных вод на очистные соору­жения насосами расчет очистных сооружений малых населенных пунктов следует производить на рас­ход, равный производительности насосных установок.

 

СХЕМЫ И СИСТЕМЫ КАНАЛИЗАЦИИ

ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

 

3.12. Система водного хозяйства промышленных предприятий должна быть с максимальным повтор­ным (последовательным) использованием производственной воды в отдельных технологических операциях и с оборотом охлаждающей воды для отдельных цехов или всего предприятий в целом. Безвозвратные потери воды должны восполняться за счет аккумулирования поверхностных сточных вод, бытовых, городских и производственных сточ­ных вод после их очистки и обеззараживания (обез­вреживания).

Прямоточная система подачи воды на производ­ственные нужды со сбросом очищенных сточных вод в водные объекты допускается лишь при обос­новании и согласовании с органами по регулирова­нию использования и охране под и органами рыбо­охраны.

3.13. При выборе схемы и системы канализации промышленных предприятий необходимо учиты­вать:

возможность исключения образования загрязнен­ных сточных вод в технологическом процессе за счет внедрения безотходных и безводных произ­водств, использования сухих процессов, устройства замкнутых систем водного хозяйства, применений воздушных методов охлаждения и т. п.;

требования к качеству воды, используемой в различных технологических процессах, и ее коли­чество;

количество и характеристику сточных вод, обра­зующихся в различных технологических процес­сах. и физико-химические свойства присутствую­щих в них загрязняющих веществ, материальный и энергетический балансы водопотребления и водоотведения;

возможность локальной очистки потоков сточ­ных вод с целью извлечения отдельных компонен­тов и повторного использования воды, а также создания локальных замкнутых систем производст­венного водоснабжения;

возможность последовательного использования воды в различных технологических процессах с различными требованиями к ее качеству;

возможность вывода отдельным потоком сточ­ных вод, требующих локальной очистки;

возможность объединения сточных вод с иден­тичной качественной характеристикой;

возможность использования в производстве очи­щенных бытовых и городских сточных вод, а также поверхностных сточных вод и создания замкнутых систем водного хозяйства без сброса сточных вод в водные объекты;

возможность протекания в трубопроводах хими­ческих процессов с образованием газообразных или твердых продуктов при поступлении в канали­зацию различных сточных вод;

условия спуска производственных сточных вод в водные объекты или в систему канализации на­селенного пункта или другого водопользова­теля.

3.14. Канализование промышленных предприятий надлежит предусматривать, как правило, по полной раздельной системе.

3.15. Сточные воды, требующие специальной очистки с целью их возврата в производство или для подготовки перед спуском в водные объекты или в систему канализации населенного пункта или другого водопользователя, следует отводить само­стоятельным потоком.

3.16. Объединение потоков производственных сточных вод с различными загрязняющими вещест­вами допускается при целесообразности их совмест­ной очистки.

3.17. Очистка производственных и городских сточных вод на внеплощадочных очистных соору­жениях может производиться совместно или раз дельно в зависимости от характеристики поступающих сточных вод и условий их повторного исполь­зования.

3.18. Производственные сточные воды, подлежа­щие совместному отведению и очистке с бытовыми сточными водами населенного пункта, не должны:

нарушать работу сетей и сооружений;

содержать вещества, которые способны засорять трубы канализационной сети или отлагаться на стен­ках труб;

оказывать разрушающее действие на материал труб и элементы сооружений канализации;

содержать горючие примеси и растворенные ве­щества, способные образовывать взрывоопасные и токсичные газы в канализационных сетях и соору­жениях;

содержать вредные вещества в концентрациях, нарушающих работу очистных сооружений или препятствующих использованию их в системах технического водоснабжения или сбросу в водные объекты (с учетом эффекта очистки).

Производственные сточные воды, не отвечающие указанным требованиям, должны подвергаться предварительной очистке. Степень их предваритель­ной очистки должна быть согласована с организа­циями. проектирующими очистные сооружения на­селенного пункта или другого водопользователя.

3.19. Сточные воды. не загрязненные в процессе производства, должны быть использованы в смете мах производственного водоснабжения предприятия или переданы другому потребителю, в том числе на орошение.

3.20. Количество сточных вод промышленных предприятий необходимо определять по технологи­ческим данным с анализом водохозяйственного баланса в части возможного увеличения водооборота и повторного использования сточных вод. при от­сутствии данных — по укрупненным нормам расхода воды на единицу продукции или сырья, по данным аналогичных предприятий. Из общего количества сточных вод промышленных предприятий следует выделять количество, принимаемое в канализацию населенного пункта или другого водопользователя.

 

СХЕМА КАНАЛИЗОВАНИЯ ПОВЕРХНОСТНЫХ

СТОЧНЫХ ВОД С ТЕРРИТОРИЙ НАСЕЛЕННЫХ ПУНКТОВ

И ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

 

3.21. При раздельной системе канализации очист­ку поверхностных сточных вод с территории города следует осуществлять на локальных или централизованных очистных сооружениях поверхностного стока. При этом в зависимости от предъявляемых требований следует, как правило, применять сооружения механической очистки {решетки, песколовки, отстойники, фильтры). В некоторых случаях возможна совместная очистка поверхностных, быто­вых и производственных сточных вод на общих очистных сооружениях, при этом поверхностные сточные воды следует аккумулировать в накопи­телях и подавать в систему канализации в часы ми­нимального притока городских сточных вод.

3.22. При полураздельной системе канализации очистку смеси поверхностных вод с бытовыми и производственными сточными водами следует осу­ществлять по полной схеме очистки, принятой для городских сточных вод.

Для снижения гидравлической нагрузки на очист­ные сооружения допускается использование регу­лирующих емкостей.

3.23. Поверхностные сточные воды с террито­рий промышленных предприятий следует подвер­гать очистке.

Разработка мероприятий по очистке поверхност­ных сточных вод на предприятиях должна основы­ваться на натурных данных об источниках загряз­нения территории и воздуха, характеристике водо­сборного бассейна, сведениях об атмосферных осадках, выпадающих в данном районе, режимах полива и мойки территории.

Если территория предприятия по составу и ко­личеству накапливающихся на поверхности приме­сей мало отличается от селитебной, поверхностные сточные воды могут быть направлены в дождевую канализацию населенного пункта.

3.24. Выбор схемы отведения поверхностных сточных вод на очистку должен осуществляться на основе оценки технической возможности и эконо­мической целесообразности:

использования, как правило, поверхностных сточных вод в системах производственного водо­снабжения;

самостоятельной очистки поверхностных сточных вод.

3.25. При разработке схемы отведения и очистки поверхностных сточных вод в зависимости от кон­кретных условий (источников загрязнения, разме­ров, расположения и рельефа водосборного бассей­на и др.) следует учитывать необходимость локали­зации отдельных участков производственной терри­тории, на которые могут попадать вредные вещест­ва, с отводом стока в производственную канализа­цию или после предварительной очистки в дождевую канализацию. В ряде случаев необходимо оценивать целесообразность раздельной очистки стоков с производственных площадей, отличающихся по ха­рактеру и степени загрязнения территории.

3.26. Для очистки поверхностных сточных вод рекомендуется предусматривать простые в эксплуа­тации и надежные в работе сооружения механичес­кой и физико-химической очистки. Во всех случаях следует применять отстойные сооружения. Для ин­тенсификации процесса очистки и обеспечения более глубокой степени очистки, чем та, которая достига­ется в отстойных сооружениях, рекомендуется применять фильтрацию, коагуляцию, флотацию.

При необходимости снижения содержания орга­нических примесей осветленные сточные воды сле­дует направлять на сооружения биологической очистки. Для интенсификации биологической очистки городских и поверхностных сточных вод допус­кается применять контактно-стабилизационный ме­тод (на аэротенках).

 

4. КАНАЛИЗАЦИОННЫЕ СЕТИ

И СООРУЖЕНИЯ НА НИХ

 

УСЛОВИЯ ТРАССИРОВАНИЯ СЕТЕЙ

И ПРОКЛАДКИ ТРУБОПРОВОДОВ

 

4.1. Расположение сетей на генеральных планах, а также минимальные расстояния в плане и при пе­ресечениях от наружной поверхности труб до соору­жений и инженерных коммуникаций должны прини­маться согласно СНиП II-89-80.

4.2. При параллельной прокладке нескольких напорных трубопроводов расстояние между на­ружной поверхностью труб следует принимать из условия производства работ, обеспечения защиты смежных трубопроводов при аварии на одном из них, в зависимости от материала труб, внутреннего давления и геологических  условий согласно СНиП 2.04.02-84.

4.3. Проектирование коллекторов, прокладыва­емых щитовой проходкой или горным способом, в том числе коллекторов глубокого заложения, необходимо выполнять согласно СНиП II-91-77 и Указаниям по производству и приемке работ по сооружению коллекторных тоннелей способом щитовой проходки в городах и промышленных предприятиях (СН 322-74).

При параллельной прокладке двух коллекторов расстояние между ними следует принимать равным пяти диаметрам наибольшего из коллекторов, но не менее 10 м.

4.4. Надземная и наземная прокладка канализа­ционных трубопроводов на территории населенных пунктов не допускается.

При пересечении глубоких оврагов, водотоков и водоемов, а также при укладке канализационных трубопроводов за пределами населенных пунктов допускается наземная и надземная прокладка тру­бопроводов.

 

ПОВОРОТЫ, СОЕДИНЕНИЯ

И ГЛУБИНА ЗАЛОЖЕНИЯ ТРУБОПРОВОДОВ

 

4.5. Угол между присоединяемой и отводящей трубами должен быть не менее 90°.

 

Примечание. Любой угол между присоединениями и отводящими трубопроводами допускается при уст­ройстве в колодце перепада в виде стояка и присоединении дождеприемников с перепадом.

 

4.6. Повороты на коллекторах надлежит преду­сматривать в колодцах; радиус кривой поворота лотка необходимо принимать не менее диаметра трубы, на коллекторах диаметром 1200 мм и бо­лее — не менее пяти диаметров и предусматривать смотровые колодцы в начале и конце кривой.

Повороты коллекторов, сооружаемых с по­мощью щитовой проходки или горным способом, надлежит принимать согласно СНиП II-91-77.

4.7. Соединения трубопроводов разных диамет­ров следует предусматривать в колодцах по шелыгам труб. При обосновании допускается соеди­нение труб по расчетному уровню воды.

4.8. Наименьшую глубину заложения канализаци­онных трубопроводов необходимо принимать на основании опыта эксплуатации сетей в данном районе. При отсутствии данных по эксплуатации мини­мальную глубину заложения лотка трубопровода допускается принимать, для труб диаметром до 500 мм — на 0,3 м; для труб большего диаметра — на 0,5 м менее большей глубины проникания в грунт нулевой температуры, не менее 0,7 м до верха трубы, считая от отметок поверхности земли или планировки. Наименьшую глубину заложения кол­лекторов с постоянным (малоколеблющимся) рас­ходом сточных вод необходимо определять тепло­техническим и статическим расчетами.

Минимальную глубину заложения коллекторов, прокладываемых щитовой проходкой, необходимо принимать не менее 3 м от отметок поверхности земли или планировки до верха щита.

Трубопроводы, укладываемые на глубину 0,7 м и менее, считая от верха трубы, должны быть пре­дохранены от промерзания и повреждения назем­ным транспортом.

Максимальную глубину заложения труб, а также коллекторов, прокладываемых щитовой проходкой или горным способом, надлежит определять расчетом в зависимости от материала труб, грунтовых условий, метода производства работ.

 

ТРУБЫ, УПОРЫ, АРМАТУРА

И ОСНОВАНИЯ ПОД ТРУБЫ

 

4.9. Для канализационных трубопроводов сле­дует применять:

самотечных — безнапорные железобетонные, бе­тонные, керамические, чугунные, асбестоцементные, пластмассовые трубы и железобетонные детали;

напорных — напорные железобетонные, асбесто­цементные, чугунные, стальные и пластмассовые трубы.

 

Примечания: 1. Применение чугунных труб для самотечной и стальных для напорной сетей допускается при прокладке в труднодоступных пунктах строительства, в вечномерзлых, просадочных грунтах, на подрабатыва­емых территориях, в местах переходов через водные пре­грады, под железными и автомобильными дорогами, в местах пересечения с сетями хозяйственно-питьевого водо­провода, при прокладке трубопроводов по опорам эста­кад, в местах, где возможны механические повреждения труб.

2. При укладке трубопроводов в агрессивных средах следует применять трубы, стойкие к коррозии.

3. Стальные трубопроводы должны быть покрыты снаружи антикоррозионной изоляцией. На участках воз­можной электрокоррозии надлежит предусматривать катод­ную защиту трубопроводов.

 

4.10. Тип основания под трубы необходимо при­нимать в зависимости от несущей способности грунтов и нагрузок.

Во всех грунтах, за исключением скальных, плывунных, болотистых и просадочных I типа, необходимо предусматривать укладку труб непосредственно на выровненное и утрамбованное дно траншеи.

В скальных грунтах необходимо предусматривать укладку труб на подушку толщиной не менее 10 см из местного песчаного или гравелистого грунта, в илистых, торфянистых и других слабых грунтах — на искусственное основание.

4.11. На напорных трубопроводах в необходимых случаях надлежит предусматривать установку задвижек, вантузов, выпусков и компенсаторов в ко­лодцах.

4.12. Уклон напорных трубопроводов по направ­лению к выпуску следует принимать не менее 0,001.

Диаметр выпусков следует назначать из условия опорожнения участка трубопроводов в течение не более 3 ч.

Отвод сточной воды, выпускаемой из опорожняемого участка, надлежит предусматривать без сброса в водный объект в специальную камеру с последующей перекачкой в канализационную сеть или с вывозом сточных вод автоцистерной.

4.13. На поворотах напорных трубопроводов в вертикальной или горизонтальной плоскости, когда возникающие усилия не могут быть восприняты стыками труб, должны предусматриваться упоры согласно СНиП 2.04.02-84.

 

СМОТРОВЫЕ КОЛОДЦЫ

 

4.14. Смотровые колодцы на канализационных сетях всех систем надлежит предусматривать:

в местах присоединений;

в местах изменения направления, уклонов и диа­метров трубопроводов;

на прямых участках на расстояниях в зависимости от диаметра труб: 150 мм — 35 м, 200 — 450 мм — 50 м, 500 600 мм 75 м, 700 900 мм 100 м, 1000 1400 мм 150 м, 1500 2000 мм 200 м, свыше 2000 мм 250 300 м.

4.15. Размеры в плане колодцев или камер бы­товой и производственной канализации надлежит принимать в зависимости от трубы наибольшего диаметра D:

на трубопроводах диаметром до 600 мм длину и ширину 1000 мм;

на трубопроводах диаметром 700 мм и более — длину D + 400 мм, ширину D + 500 мм.

Диаметры круглых колодцев следует принимать на трубопроводах диаметрами: до 600 мм — 1000 мм; 700 мм 1250 мм; 8001000 мм 1500 мм; 1200 мм 2000 мм.

 

Примечания: 1. Размеры в плане колодцев на по­воротах необходимо определять из условия размещения а них лотков поворота.

2. На трубопроводах диаметром не более 150 мм при глубине заложения до 1,2 м допускается устройство колод­цев диаметром 700 мм.

3. При глубине заложения свыше 3 м диаметр колодцев следует принимать не менее 1500 мм.

 

4.16. Высоту рабочей части колодцев (от попки или площадки до покрытия), как правило, необхо­димо принимать 1800 мм; при высоте рабочей части колодцев менее 1200 мм ширину их допуска­ется принимать равной D + 300 мм, но не менее 1000 мм.

4.17. В рабочей части колодцев надлежит предусматривать:

установку стальных скоб или навесных лестниц для спуска в смотровой колодец;

на трубопроводах диаметром свыше 1200 мм при высоте рабочей части свыше 1500 мм огра­ждение рабочей площадки высотой 1000 мм.

4.18. Полки лотка смотровых колодцев должны быть расположены на уровне верха трубы большего диаметра.

В колодцах на трубопроводах диаметром 700 мм и более допускается предусматривать рабочую пло­щадку с одной стороны лотка и полку шириной не менее 100 мм с другой. На трубопроводах диаметром свыше 2000 мм допускается устройство рабочей площадки на консолях, при этом размер открытой части лотка следует принимать не менее 2000 х 2000 мм.

4.19. Размеры в плане колодцев дождевой кана­лизации следует принимать: на трубопроводах диаметром до 600 мм включ. —диаметром 1000 мм; на трубопроводах диаметром 700 мм и более — круглыми или прямоугольными с лотковой частью длиной 1000 мм и шириной, равной диаметру наибольшей трубы.

Высоту рабочей части колодцев на трубопроводах диаметром от 700 до 1400 мм включ. надлежит принимать от лотка трубы наибольшего диаметра; на трубопроводах диаметром 1500 мм и более рабочие части не предусматриваются.

Полки лотков колодцев должны быть преду­смотрены только на трубопроводах диаметром до 900 мм включ. на уровне половины диаметра наибольшей трубы.

4.20. Горловины колодцев на сетях канализации всех систем надлежит принимать диаметром 700 мм; размеры горловины и рабочей части колодцев на поворотах, а также на прямых участках трубопроводов диаметром 600 мм и более на расстояниях через 300—500 м следует предусматривать достаточ­ными для опускания приспособлений для про­чистки сети.

4.21. Установку люков необходимо предусматри­вать: в одном уровне с поверхностью проезжей части дорог при усовершенствованном покрытии; на 50—70 мм выше поверхности земли в зеленой зоне и на 200 мм выше поверхности земли на не­застроенной территории. В случае необходимости надлежит предусматривать люки с запорными устройствами.

4.22. При наличии грунтовых вод с расчетным уровнем выше дна колодца необходимо предусмат­ривать гидроизоляцию дна и стен колодца на 0,5 м выше уровня грунтовых вод.

4.23. На коллекторах, прокладываемых щитовой проходкой или горным способом, необходимо предусматривать устройство смотровых шахтных стволов или скважин диаметром не менее 0,9 м. Расстояние между смотровыми шахтными стволами или скважинами не должно превышать 500 м.

4.24. Оборудование шахтных стволов должно соответствовать требованиям правил безопасности при строительстве подземных гидротехнических сооружений и правил безопасности для угольных, сланцевых или рудных шахт.

В смотровых скважинах необходимо предусмат­ривать площадки с люком, расстояние между кото­рыми по высоте должно быть не более 6 м, а также устройство металлических лестниц или скоб. Люк в плане должен быть размером не менее 600 х 700 мм или диаметром не менее 700 мм.

 

ПЕРЕПАДНЫЕ КОЛОДЦЫ

 

4.25. Перепадные колодцы следует предусматри­вать:

для уменьшения глубины заложения трубопро­водов;

во избежание превышения максимально допу­стимой скорости движения сточной воды или резкого изменения этой скорости;

при пересечении с подземными сооружениями;

при затопленных выпусках в последнем перед водоемом колодце.

 

Примечание. На трубопроводах диаметром до 600 мм перепады высотой до 0,5 м допускается осуще­ствлять без устройства перепадного колодца — путем сли­ва в смотровом колодце.

 

4.26. Перепады высотой до 3 м на трубопроводах диаметром 600 мм и более надлежит принимать в виде водосливов практического профиля.

Перепады высотой до 6 м на трубопроводах диаметром до 500 мм включ. следует осуществлять в колодцах в виде стояка сечением не менее сече­ния подводящего трубопровода.

В колодцах над стояком необходимо преду­сматривать приемную воронку, под стояком — водобойный приямок с металлической плитой в основании.

Для стояков диаметром до 300 мм допускается установка направляющего колена взамен водо­бойного приямка.

4.27. На коллекторах дождевой канализации при высоте перепадов до 1 м допускается преду сматривать перепадные колодцы водосливного типа, при высоте перепада 1—3 м — водобойного типа с одной решеткой из водобойных балок (плит), при высоте перепада 3—4 м — с двумя водобой­ными решетками.

 

ДОЖДЕПРИЕМНИКИ

 

4.28. Дождеприемники по ГОСТ 26008-83 сле­дует предусматривать:

на затяжных участках спусков (подъемов);

на перекрестках и пешеходных переходах со стороны притока поверхностных вод;

в пониженных местах в конце затяжных уча­стков спусков;

в пониженных местах при пилообразном профиле лотков улиц;

в местах улиц, дворовых и парковых территорий, не имеющих стока поверхностных вод.

В пониженных местах наряду с дождеприемника­ми, имеющими горизонтальное перекрытое решеткой отверстие в плоскости проезжей части, до­пускается также применение дождеприемников с вертикальным в плоскости бордюрного камня отверстием и комбинированного типа с отверстием как горизонтальным, так и вертикальным.

На участках с затяжным продольным уклоном следует применять дождеприемники с горизонталь­ным отверстием.

4.29. Дождеприемники с горизонтальным отверстием в пониженных местах лотков с пилообразным продольным профилем и на участках с продольным уклоном менее 0,005 оборудуются малой прямо­угольной дождеприемной решеткой.

На участках улиц с продольным уклоном 0,005 или более и в пониженных местах в конце затяжных участков спусков дождеприемники с горизонталь­ным отверстием должны быть оборудованы боль­шой прямоугольной решеткой.

4.30. Расстояния между дождеприемниками при пилообразном продольном профиле лотка назначаются в зависимости от значений продольного ук­лона лотка и глубины воды в лотке в точке измене­ния направления продольного уклона и у дожде­приемника.

Расстояния между дождеприемными решетками на участке улиц с продольным уклоном одного направления устанавливаются расчетом исходя из условия, что ширина потока в лотке перед решеткой не превышает 2 м.

4.31. Длина присоединения от дождеприемника до смотрового, колодца на коллекторе должна быть не более 40 м, при этом допускается установка не более одного промежуточного дождеприемника. Диаметр присоединения назначается по расчетному притоку воды к дождеприемнику при уклоне 0,02, но должен быть не менее 200 мм.

4.32. К дождеприемнику допускается предусма­тривать присоединения водосточных труб зданий, а также дренажных трубопроводов.

4.33. При полураздельной системе канализации надлежит предусматривать дождеприемники с при­ямком глубиной 0,5—0,7 м для осадка и гидрав­лическим затвором высотой не менее 0,1 м.

4.34. При раздельной системе канализации дожде­приемники следует предусматривать с плавным очертанием дна без приямка для осадка.

4.35. Присоединение канавы к закрытой сети надлежит предусматривать через колодец с от­стойной частью.

В оголовке канавы необходимо предусматривать решетки с прозорами не более 50 мм; диаметр соединительного трубопровода следует принимать по расчету, но не менее 250 мм.

 

дюкеры

 

4.36. Диаметры труб дюкеров следует принимать не менее 150 мм.

4.37. Дюкеры при пересечении водоемов и водотоков необходимо принимать не менее чем в две рабочие линии из стальных труб с усиленной анти­коррозионной изоляцией, защищенной от механи­ческих повреждений. Каждая линия дюкера должна проверяться на пропуск расчетного расхода с учетом допустимого подпора.

При расходах сточных вод, не обеспечивающих расчетных скоростей (см. п. 2.34), одну из двух линий надлежит принимать резервной (нерабочей).

Проекты дюкеров через водные объекты, исполь­зуемые для хозяйственно-питьевого водоснабжения и рыбохозяйственных целей, должны быть согласованы с органами санитарно-эпидемиологической службы и охраны рыбных запасов, через судо­ходные водотоки — с органами управления речным флотом союзных республик.

При пересечении оврагов и суходолов допускается предусматривать дюкеры в одну линию.

4.38. При проектировании дюкеров необходимо принимать:

глубину заложения подводной части трубопрово­да от проектных отметок или возможного размыва дна водотока до верха трубы — не менее 0,5 м, в пределах фарватера на судоходных водных объек­тах — не менее 1 м;

угол наклона восходящей части дюкеров — не более 20° к горизонту;

расстояние между нитками дюкера в свету не менее 0,7 — 1,5 м в зависимости от давления.

4.39. Во входной и выходной камерах дюкера надлежит предусматривать затворы.

4.40. Отметку планировки у камер дюкера при расположении их в пойменной части водного объек­та следует принимать на 0,5 м выше горизонта высоких вод с обеспеченностью 3 %.

 

ПЕРЕХОДЫ ЧЕРЕЗ ДОРОГИ

 

4.41. Переходы трубопроводов через железные и автомобильные дороги следует проектировать согласно СНиП 2.04.02-84.

 

ВЫПУСКИ, ЛИВНЕОТВОДЫ И ЛИВНЕСПУСКИ

 

4.42. Выпуски в водные объекты надлежит размещать в местах с повышенной турбулентностью потока (сужениях, протоках, порогах и пр.).

В зависимости от условий сброса очищенных сточных вод в водотоки следует принимать берего­вые, русловые или рассеивающие выпуски. При сбросе очищенных сточных вод в моря и водохрани­лища необходимо предусматривать, как правило, глубоководные выпуски.

4.43. Трубопроводы русловых и глубоководных выпусков необходимо принимать из стальных с уси­ленной изоляцией или пластмассовых труб с про­кладкой их в траншеях. Оголовки русловых, бе­реговых и глубоководных выпусков надлежит предусматривать преимущественно бетонными.

Конструкцию выпусков необходимо принимать с учетом требований судоходства, режимов уров­ней, волновых воздействий, а также геологических условий и русловых деформаций.

4.44. Ливнеотводы следует предусматривать в виде:

выпусков с оголовками а форме стенки с открылками — при неукрепленных берегах;

отверстия в подпорной стенке — при наличии набережных.

Во избежание подтопления территории в случае периодических подъемов уровня воды в водном объекте а зависимости от местных условий не­обходимо предусматривать специальные затворы.

4.45. Ливнеспуски следует принимать в виде камеры с водосливным устройством, рассчитан­ным на сбрасываемый в водный объект расход воды. Конструкция водосливного устройства долж­на определяться в зависимости от местных условий (местоположения ливнеспуска на главном коллек­торе или притоке, максимального уровня воды в водном объекте и т. п.).

 

ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СЕТЕЙ

КАНАЛИЗАЦИИ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

 

4.46. Число сетей производственной канализации на промышленной площадке необходимо опреде­лять исходя из состава сточных вод, их расхода и температуры, возможности повторного использова­ния воды, необходимости локальной очистки и строительства бессточных систем водообеспечения.

4.47. На промышленных площадках в зависи­мости от состава сточных вод допускается предусматривать прокладку канализационных трубопро­водов в открытых и закрытых каналах, лотках, тоннелях, а также по эстакадам.

4.48. Расстояния от трубопроводов, отводящих сточные воды, содержащие агрессивные, летучие токсичные и взрывоопасные вещества (с удельным весом газов и паров менее 0,8 по отношению к воздуху), до наружной стенки проходных тоннелей следует принимать не менее 3 м, до подвальных по­мещений — не менее б м.

При наружной прокладке напорных трубопрово­дов, транспортирующих агрессивные сточные воды, их следует укладывать в вентилируемых проход­ных или полупроходных каналах. Допускается прокладка в непроходных каналах при устрой­стве на них смотровых камер.

4.49. Для запорных, ревизионных и соединительных устройств на трубопроводах сточных вод, содержащих летучие токсичные и взрывоопасные вещества, необходимо предусматривать повышен­ную герметичность.

4.50. Для транспортирования агрессивных произ­водственных сточных вод в зависимости от состава и концентрации, а также от температуры необходи­мо применять трубы, стойкие к воздействию транс­портируемых по ним веществ.

4.51. Заделку стыков раструбных труб, предназ­наченных для отвода агрессивных сточных вод, следует предусматривать материалами, стойкими к воздействию этих жидкостей. Для трубопроводов с жесткими стыками надлежит предусматривать основание, исключающее возможность просадки.

4.52. Сооружения на сети канализации агрессив­ных сточных вод должны быть защищены от корро­зионного воздействия жидкостей и их паров.

4.53. Лотки колодцев для кислых сточных вод следует предусматривать из кислотоупорных мате­риалов; в таких колодцах не допускается установ­ка металлических скоб и лестниц.

При диаметре трубопровода до 500 мм необходи­мо предусматривать облицовку прямолинейных лотков половинками керамических труб.

4.54. На выпусках из зданий сточных вод, содер­жащих легковоспламеняющиеся, горючие и взрыво­опасные вещества, необходимо предусматривать камеры с гидравлическим затвором.

4.55. Отвод дождевых вод с площадок открытого резервуарного хранения горючих, легковоспламеня­ющихся и токсичных жидкостей, кислот, щелочей и т. п., не связанных с регулярным сбросом загрязненных сточных вод, надлежит предусматривать через распределительный колодец с задвижками, позволяющими направлять воды при нормальных условиях в систему дождевой канализации, а при появлении течи в резервуарах-хранилищах — в тех­нологические аварийные приемники, входящие в состав складского хозяйства.

 

ВЕНТИЛЯЦИЯ СЕТЕЙ

 

4.56. Вытяжную вентиляцию сетей бытовой и общесплавной канализации следует предусматри­вать через стояки внутренней канализации зданий.

4.57. Специальные вытяжные устройства над­лежит предусматривать во входных камерах дюке­ров, в смотровых колодцах (в местах резкого сни­жения скоростей течения воды в трубах диаметром свыше 400 мм) и в перепадных колодцах при высоте перепада свыше 1 м и расходе сточной воды свыше 50 л/с.

4.58. В отдельных случаях при соответствующем обосновании допускается проектировать искусст­венную вытяжную вентиляцию сетей.

4.59. Для естественной вытяжной вентиляции наружных сетей, отводящих сточные воды. содер­жащие летучие токсичные и взрывоопасные ве­щества, на каждом выпуске из здания следует предусматривать вытяжные стояки диаметром не менее 200 мм, размещаемые в отапливаемой части здания, при этом они должны иметь сообщение с наружной камерой гидравлического затвора и должны быть выведены выше конька крыши не менее чем на 0,7 м.

На участках сети, к которым выпуски не присоединяются, вытяжные стояки необходимо преду­сматривать не менее чем через 250 м. При отсут­ствии зданий следует предусматривать стояки диаметром 300 мм и высотой не менее 5 м.

4.60. Вентиляцию канализационных коллекторов, прокладываемых щитовым или горным способом, следует предусматривать через вентиляционные киоски, устанавливаемые, как правило, над шахт­ными стволами.

Допускается устройство вентиляционных кио­сков над смотровыми скважинами.

 

СЛИВНЫЕ СТАНЦИИ

 

4.61. Прием сточных вод от неканализованных районов надлежит осуществлять через сливные станции.

4.62. Сливные станции следует размещать вблизи канализационного коллектора диаметром не менее 400 мм, при этом количество сточных вод. посту­пающих от сливной станции, не должно превышать 20 % общего расчетного расхода по коллектору.

4.63. Сточная вода, поступающая от сливной станции, не должна содержать крупных механиче­ских примесей, песка и БПКполн свыше 1000 мг/л.

4.64. Отношение количества добавляемой воды к количеству жидких отбросов надлежит принимать 1:1. Следует предусматривать: 30 % общего рас­хода — на мойку транспортных средств брандспой­тами, 25 % на разбавление отбросов в канале у приемных воронок и 45 % в отделении решеток и на создание водяной завесы.

Вода должна подаваться от водопроводной сети с разрывом струи.

 

5. НАСОСНЫЕ И ВОЗДУХОДУВНЫЕ СТАНЦИИ

 

ОБЩИЕ УКАЗАНИЯ

 

5.1. Насосные и воздуходувные станции по надежности действия подразделяются на три кате­гории, указанные в табл. 20.

 

Таблица 20

 

Категория надежности действия

Характеристика режима работы

насосных станций

 

 

Первая

 

Не допускающие перерыва или снижения подачи сточных вод

Вторая

Допускающие перерыв подачи сточных вод не более 6 ч; воздуходувные стан­ции

Третья

Допускающие перерыв подачи сточных вод не более суток

 

 

Примечание. Перерыв в работе насосных станций второй и третьей категорий возможен при учете требований п. 1.8, технологических условий производства или прекращении водоснабжения населенных пунктов не более суток при численности жителей до 5000.

 

 

5.2. Требования к компоновке насосных и возду­ходувных станций, определению размеров ма­шинных залов, подъемно-транспортному оборудо­ванию, размещению насосных агрегатов, арматуры и трубопроводов, мероприятиям против затопления машинных залов надлежит принимать согласно СНиП 2.04.02-84.

5.3. При проектировании насосных станций для перекачки производственных сточных вод, содер­жащих горючие, легковоспламеняющиеся, взрыво­опасные и токсичные вещества, кроме настоящих норм следует учитывать соответствующие отрасле­вые нормы, указания, инструкции, а также Пра­вила устройства электроустановок (ПУЭ-76) Минэнерго СССР.

 

НАСОСНЫЕ СТАНЦИИ

 

5.4. Насосы, оборудование и трубопроводы сле­дует выбирать в зависимости от расчетного притока и физико-химических свойств сточных вод и осадков, высоты подъема и с учетом характеристик насосов и напорных трубопроводов, а также очередности ввода в действие объекта. Число резервных насосов надлежит принимать по табл. 21.

 

Примечания: 1. Производительность насосов для перекачки дождевых вод необходимо принимать с учетом незатопляемости пониженных территорий при установленном периоде однократного переполнения сети и регулиро­вания стока.

2. Для перекачки канализационных илов, осадков и песка допускается применять гидроэлеваторные и эрлифтные установки.

3. В насосных станциях первой категории перекачки производственных вод при невозможности обеспечения электропитания от двух источников допускается устанавливать резервные насосные агрегаты с двигателями тепловы­ми, внутреннего сгорания и т. д.

4. При необходимости перспективного увеличения производительности заглубленных насосных станций допуска­ется предусматривать возможность замены насосов насо­сами большей производительности или устройство резерв­ных фундаментов для установки дополнительных насосов.

 

Таблица 21

 

Бытовые и близкие к ним по составу производственные сточные воды

 

Агрессивные

сточные воды

Число насосов

 

 

рабочих

резервных при категории надежности действия насосных станций

 

рабочих

резервных при всех категориях надежности

 

первой

второй

третьей

 

действия насосных станций

 

1

 

 

2

 

1

 

1

 

1

 

1 и 1 на складе

2

 

2

1

1

23

2

3 и более

2

2

1 и 1

на складе

4

3

 

5 и более

Не менее 50%

 

Примечания: 1. В насосных станциях дождевой канализации резервные насосы, как правило, предусматривать не требуется, за исключением случаев, когда аварийный сброс дождевых вод в водные объекты невозможен.

2. При реконструкции, связанной с увеличением производительности, допускается для перекачки бытовых и близких к ним по составу производственных сточных вод в насосных станциях третьей категории не устанавливать резервные агрегаты, предусматривая хранение их на складе.

 

 

5.5. Насосные станции для перекачки бытовых и поверхностных сточных вод следует располагать в отдельно стоящих зданиях.

Насосные станции для перекачки производствен­ных сточных вод допускается располагать в блоке с производственными зданиями или в производ­ственных помещениях. В общем машинном зале насосных станций допускается предусматривать установку насосов, предназначенных для перекачки сточных вод различных категорий, кроме содержа­щих горючие, легковоспламеняющиеся, взрыво­опасные и летучие токсичные вещества.

Допускается установка насосов для перекачки бытовых сточных вод в производственных поме­щениях станций очистки сточных вод.

5.6. На подводящем коллекторе насосной стан­ции следует предусматривать запорное устрой­ство с приводом, управляемым с поверхности земли.

5.7. К каждому насосу, как правило, надлежит предусматривать самостоятельный всасывающий трубопровод.

5.8. Число напорных трубопроводов от насосных станций первой категории необходимо принимать не менее двух с устройством в случае необходимо­сти между ними переключений, расстояния между которыми следует определять из условия обеспече­ния при аварии на одном из них пропуска 100%-ного расчетного расхода, при этом следует предусматри­вать использование резервных насосов,

Для насосных станций второй и третьей катего­рий допускается предусматривать один напорный трубопровод.

5.9. Насосы, как правило, необходимо устанавли­вать под заливом. В случае расположения корпуса насоса выше расчетного уровня сточных вод в ре­зервуаре следует предусматривать мероприятия для обеспечения запуска насоса. Установку насосов для перекачки шламов и илов надлежит преду сматривать только под заливом.

5.10. Скорости движения сточных вод или осад­ков во всасывающих и напорных трубопроводах должны исключать осаждение взвесей. Для быто­вых сточных вод наименьшие скорости следует принимать согласно требованиям п. 2.34.

5.11. В насосных станциях для шламов или илов необходимо предусматривать возможность промыв­ки всасывающих и напорных трубопроводов.

В отдельных случаях допускается предусматри­вать механические средства прочистки шламопроводов.

5.12. При необходимости защиты насосов от засорения в приемных резервуарах насосных стан­ций следует предусматривать решетки с механизи­рованными граблями или решетки-дробилки.

При количестве отбросов менее 0,1 м3/сут до­пускается принимать решетки с ручной очисткой. Ширину прозоров решеток необходимо принимать на 10—20 мм менее диаметров проходных сече­ний устанавливаемых насосов.

При установке решеток с механизированными граблями или решеток-дробилок число резервных решеток необходимо принимать по табл. 22.

 

Таблица 22

 

 

Тип решетки

Число решеток

 

 

рабочих

резервных

 

С механизированными граблями и с прозорами шириной, мм:

    св. 20

 

 

 

1 и более

 

 

 

1

    1620

До 3

1

 

Св. 3

 

2

Решетки-дробилки, устанавлива­емые:

    на трубопроводах

 

До 3

 

1

(с ручном очисткой)

    на каналах

До 3

1

 

Св. 3

 

2

С ручной очисткой

1

 

 

5.13. Количество отбросов, задерживаемых ре­шетками из бытовых сточных вод, следует прини­мать по табл. 23. Средняя плотность отбросов — 750 кг/м3, коэффициент часовой неравномерности поступления 2.

 

Таблица 23

 

Ширина прозоров

решеток, мм

Количество отбросов, снимаемых с решеток на 1 чел., л/год

 

 

1620

 

8

2535

3

4050

2,3

6080

1,6

90125

 

1,2

 

5.14. Скорость движения сточных вод в прозорах решеток при максимальном притоке следует при­нимать в прозорах механизированных решеток 0,8—1 м/с, в прозорах решеток-дробилок — 1,2 м/с.

5.15. При механизированных решетках следует предусматривать установку дробилок для измель­чения отбросов и подачи измельченной массы в сточ­ную воду перед решеткой или установку герметич­ных контейнеров согласно требованиям п. 6.19.

При количестве отбросов свыше 1 т/сут кроме рабочей необходимо предусматривать резервную дробилку.

5.16. Вокруг решеток должен быть обеспечен проход шириной, м, не менее:

с механизированными граблями — 1,2 (перед фронтом — 1,5);

с ручной очисткой — 0,7;

решеток-дробилок, устанавливаемых на кана­лах, —1.

В заглубленных насосных станциях установку решеток-дробилок на трубопроводах допускается предусматривать на расстоянии не менее 0,25 м от стены.

5.17. Приемный резервуар и решетки, совмещен­ные в одном здании с машинным залом, должны быть отделены от него глухой водонепроницаемой перегородкой. Сообщение через дверь между машинным залом и помещением решеток допускается только в незаглубленной части здания при обес­печении мероприятий, исключающих перелив сточ­ных вод из помещения решеток в машинный зал при подтоплении сети.

5.18. Вместимость приемного резервуара насос­ной станции надлежит определять в зависимости от притока сточных вод, производительности насо­сов и допустимой частоты включения электрообо­рудования, но не менее 5-минутной максимальной производительности одного из насосов.

В приемных резервуарах насосных станций производительностью свыше 100 тыс. м3/сут необ­ходимо предусматривать два отделения без увели­чения общего объема.

Вместимость приемных резервуаров насосных станций, работающих последовательно, следует опре­делять из условия их совместной работы. В отдель­ных случаях эту вместимость допускается опреде­лять исходя из условий опорожнения напорного трубопровода.

5.19. Вместимость резервуара иловой станции при перекачке осадка за пределы станции очистки сточ­ных вод необходимо определять исходя из условия 15-минутной непрерывной работы насоса, при этом допускается уменьшать ее за счет непрерывного поступления осадка из очистных сооружений во время работы насоса.

Приемные резервуары иловых насосных станций допускается принимать с учетом возможности ис­пользования их как емкостей для воды при про­мывке илопроводов.

5.20. В приемных резервуарах надлежит преду­сматривать устройства для взмучивания осадка и обмыва резервуара. Уклон дна резервуара к приямку следует принимать не менее 0,1 .

5.21. В резервуарах для приема сточных вод, смешение которых может вызвать образование вредных газов, осаждающихся веществ, или при необходимости сохранения потоков сточных вод с различными загрязнениями следует предусматри­вать самостоятельные секции для каждого потока сточных вод.

5.22. Резервуары производственных сточных вод, содержащих горючие, легковоспламеняющиеся и взрывоопасные или летучие токсичные вещества, должны быть отдельно стоящими. Расстояния от наружной стены этих резервуаров должны быть, м, не менее: 10 до зданий насосных станций, 20 — до других производственных зданий, 100 — до об­щественных зданий.

5.23. Резервуары производственных агрессивных сточных вод должны быть, как правила, отдельно стоящими. Допускается их размещение в машин­ном зале. Число резервуаров должно быть не менее двух при непрерывном поступлении сточных вод. При периодических сбросах допускается предусмат­ривать один резервуар, при этом периодичность сбросов должна обеспечивать возможность про­ведения ремонтных работ.

5.24. Укладку всасывающих трубопроводов меж­ду резервуарами и зданиями насосных станции для агрессивных производственных сточных вод следует предусматривать в каналах или тоннелях.

5.25. в насосных станциях перекачки сточных вод необходимо предусматривать укладку трубопро­водов и арматуры, как правило, над поверхностью пола.

Не допускается укладка в каналах трубопроводов, транспортирующих агрессивные сточные воды. Количество запорной арматуры надлежит прини­мать минимальным.

5.26. В насосных станциях, как правило, надлежит предусматривать бытовые помещения (уборные с умывальниками, душевые, гардеробные) согласно СНиП II-92-76 в зависимости от численности обслу­живающего персонала и группы производственных процессов, а также вспомогательные помещения по табл. 24.

 

Таблица 24

 

 

Производительность, м3/сут

Площадь помещений, м2

 

 

служебных

мастерских

кладовых

 

До 5000

 

 

 

От 5000 до 15 000

8

10

6

От 15 000 до 100 000

12

15

6

Св. 100 000

 

20

25

10

 

Примечания: 1. Состав бытовых и вспомогательных помещений в насосных станциях, располагаемых на площадках предприятий и очистных сооружений, следует определять в зависимости от наличия аналогичных помеще­ний в близлежащих зданиях. Санитарный узел надлежит предусматривать в случае расположения насосной станции на расстоянии свыше 50 м от производственных зданий, имеющих санитарно-бытовые помещения.

2. В насосных станциях с управлением без постоянного обслуживающего персонала служебные помещения допускается не предусматривать.

 

 

ВОЗДУХОДУВНЫЕ СТАНЦИИ

 

5.27. Воздуходувные станции для аэрирования сточных вод следует размещать на территории очистных сооружений в непосредственной близости от места потребления сжатого воздуха и электрораспределительных устройств.

5.28. Воздуходувное оборудование должно выбираться на основании технологического расчета аэрационных сооружений с учетом прочих потреб­ностей площадки а сжатом воздухе.

5.29. Число рабочих агрегатов при производительности станции свыше 5000 м3 воздуха в 1 ч надлежит принимать не менее двух, при меньшей производительности допускается принимать один рабочий агрегат.

Число резервных агрегатов следует принимать при числе рабочих: до трех — один, четыре и более — два.

5.30. В здании воздуходувной станции допускается предусматривать размещение устройств для очистки воздуха, насосов для производственной воды, активного ила, опорожнения аэротенков, а также центральной диспетчерской, распредели­тельных устройств, трансформаторной подстанции, вспомогательных и бытовых помещений.

5.31. Машинный зал должен быть отделен от других помещений и иметь непосредственный выход наружу.

Размеры машинного зала а плане следует опре­делять согласно СНиП 2.04.02-84.

5.32. Устройство  для  забора  атмосферного воздуха необходимо предусматривать согласно СНиП II-33-75.

Очистку воздуха следует предусматривать на рулонных и других фильтрах. Компоновка филь­тров должна обеспечивать возможность отключе­ния отдельных фильтров для замены при регенера­ции.

При числе рабочих фильтров до трех необходимо предусматривать один резервный фильтр, свыше трех — два резервных.

При использовании в аэротенках дырчатых труб допускается подача воздуха без очистки.

5.33. Скорость движения воздуха надлежит при­нимать, м/с: в камерах фильтров — до 4, в под­водящих каналах до 6, в трубопроводах — до 40.

5.34. Расчет, воздухопроводов следует произво­дить с учетом сжатия воздуха, повышения его температуры и необходимости обеспечения мини­мальной разницы давления у отдельных секций сооружений.

Расчетную величину потерь давления в аэраторах (с учетом увеличения сопротивления за время эксплуатации) следует принимать, кПа (м вод. ст.):

для мелкопузырчатых аэраторов — не более 7 (0,7);

для среднепузырчатых, заглубленных свыше 3 м, 1,5 (0,15);

при   низконапорной   аэрации     0,150,5 (0,0150,05).

5.35. При числе секций аэротенков свыше четы­рех подачу воздуха от воздуходувной станции не­обходимо предусматривать не менее чем по двум воздуховодам.

 

6. ОЧИСТНЫЕ СООРУЖЕНИЯ

 

ОБЩИЕ УКАЗАНИЯ

 

6.1. Степень очистки сточных вод необходимо определять в зависимости от местных условий и с учетом возможного использования очищенных сточ­ных вод и поверхностного стока для производствен­ных или сельскохозяйственных нужд.

Степень очистки сточных вод, сбрасываемых в водные объекты, должна отвечать требованиям „Правил охраны поверхностных вод от загрязнения сточными водами", утвержденных Минводхозом СССР, Минздравом СССР и Минрыбхозом СССР, и „Правил санитарной охраны прибрежных вод мо­рей", утвержденных Минздравом СССР и согласо­ванных Госстроем СССР, повторно используемых — санитарно-гигиеническим, а также технологическим требованиям потребителя.

Необходимо выявлять также возможность ис­пользования обезвреженных осадков сточных вод для удобрения и других целей.

Степень смешения и разбавления сточных вод с водой водного объекта следует определять согласно „Методическим указаниям по применению правил охраны поверхностных вод от загрязнения сточными водами".

6.2. Допустимые концентрации основных загряз­няющих веществ в смеси бытовых и производственных сточных вод при поступлении на сооружения биологической очистки (в среднесуточной пробела также степень их удаления а процессе очистки сле­дует принимать согласно Правилам приема производственных сточных вод в системы канализации населенных пунктов", утвержденным Минжилкомхозом РСФСР и согласованным ГСЭУ Минздрава СССР, Минрыбхозом СССР, Минводхозом СССР и Госстроем СССР.

 

Примечания: 1. При невозможности обеспечить предельно допустимую концентрацию (ПДК) загрязняющих веществ в воде водного объекта с учетом эффекта очистки и степени разбавления их водой водного объекта концент­рацию этих веществ, поступающих не очистные сооружения. надлежит снижать за счет устройства локальных очистных сооружений.

2. Содержание биогенных элементов ив должно быть менее 5 мг/п азота N и 1 мг/л фосфора Р на каждые 100 мг/л БПКполн.

 

6.3. Среднюю скорость окисления многокомпо­нентных смесей следует принимать по эксперимен­тальным данным; при отсутствии их допускается принимать скорость окисления как средневзвешен­ную величину скоростей окисления веществ, входя­щих в многокомпонентную смесь.

6.4. Количество загрязняющих воду веществ на одного жителя для определения их концентрации в бытовых сточных водах необходимо принимать по табл. 25. Концентрацию загрязняющих веществ над­лежит определять исходя из удельного водоотводения на одного жителя.

 

Таблица 25

 

 

Показатель

Количество загрязняющих веществ на одного жителя, г/сут

 

Взвешенные вещества

 

65

БПКполн неосветленной жидкости

75

БПКполн осветленной жидкости

40

Азот аммонийных солей N

8

Фосфаты Р2О5

3,3

    В том числе от моющих веществ

1,6

Хлориды Сl

9

Поверхностно-активные вещества (ПАВ)

 

2,5

 

Примечания: 1. Количество загрязняющих веществ от населения, проживающего в неканализованных районах, надлежит учитывать в размере 33% от указанных в табл. 25.

2. При сбросе бытовых сточных вод промышленных предприятий в канализацию населенного пункта количество загрязняющих веществ от эксплуатационного персонала дополнительно не учитывается.

 

 

6.5. В составе и концентрации загрязняющих ве­ществ в сточных водах необходимо учитывать их содержание в исходной водопроводной воде, а также загрязняющие вещества от сооружений по обработ­ке осадков сточных вод, от промывных вод соору­жений глубокой очистки и т.п.

6.6. Расчет сооружений для очистки производ­ственных сточных вод и обработки их осадков сле­дует выполнять на основании настоящих норм, норм строительного проектирования предприятий, зданий и сооружений соответствующих отраслей промышленности, данных научно-исследовательских институтов и опыта эксплуатации действующих со­оружений.

6.7. Расчетные расходы сточных вод необходимо определять по суммарному графику притока как при подаче их насосами, так и при самотечном по­ступлении на очистные сооружения.

6.8. Расчет сооружений биологической очистки сточных вод надлежит производить на сумму органических загрязнений, выраженных БПКполн (для бытовых сточных вод величину БПКполн надлежит принимать равной БПК20).

6.9. При совместной биологической очистке произ­водственных и бытовых сточных вод допускается предусматривать как совместную, так и раздельную их механическую очистку.

Для взрывоопасных производственных сточных вод, а также при необходимости химической или физико-химической  очистки  производственных сточных вод и при различных методах обработки осадков производственных и бытовых сточных вод надлежит применять раздельную механическую очистку.

6.10. Состав сооружений следует выбирать в за­висимости от характеристики и количества сточ­ных вод, поступающих на очистку, требуемой сте­пени их очистки, метода обработки осадка и мест­ных условий.

6.11. Площадку очистных сооружений сточных вод надлежит располагать, как правило, с подвет­ренной стороны для господствующих ветров тепло­го периода года по отношению к жилой застройке и ниже населенного пункта по течению водотока.

6.12. Компоновка сооружений на площадке долж­на обеспечивать:

рациональное использование территории с учетом перспективного расширения сооружений и возмож­ность строительства по очередям;

блокирование сооружений и зданий различного назначения и минимальную протяженность внутри-площадочных коммуникаций;

самотечное прохождение основного потока сточ­ных вод через сооружения с учетом всех потерь напора и с использованием уклона местности.

6.13. В составе очистных сооружении следует предусматривать:

устройства для равномерного распределения сточных вод и осадка между отдельными элементами сооружений, а также для отключения сооружений, каналов и трубопроводов на ремонт, для опорожне­ния и промывки;

устройства для измерения расходов сточных вод и осадка;

аппаратуру и лабораторное оборудование для контроля качества поступающих и   очищенных сточных вод.

6.14. Каналы очистных сооружений канализации и лотки сооружений следует рассчитывать на макси­мальный секундный расход сточных вод с коэффи­циентом 1,4.

6.15. Состав и площади вспомогательных и лабо­раторных помещений необходимо принимать по табл. 26.

Состав и площади помещений гардеробных, ду­шевых, санузлов и др. надлежит принимать согласно СНиП II-92-76 в зависимости от численности обслуживающего персонала и группы санитарной характеристики производственных процессов, при­нимаемой по табл. 65.

 

Таблица 26

 

 

 

Помещения

Площадь помещений, м2, при производительности очистных сооружений, тыс. м3/сут

 

 

от 1,4 до 10

св. 10 до 50

св. 50

до 100

св. 100

до 250

св. 250

 

Физико-химичес­кая лаборатория по контролю:

   сточных вод

 

 

 

 

20

 

 

 

 

25

 

 

 

 

25

 

 

 

 

40 (две комнаты

по 20)

 

 

 

 

 

50 (две комнаты

по 25)

   осадков сточных вод

15

15

 

20

Бактериологи­ческая лабора­тория

20

22

33 (две комнаты

18 и 15)

 

35 (две комнаты

20 и 15)

Весовая

6

8

 

10

12

Моечная и автоклавная

10

 

12

15

15

Помещения для хранения посуды и реактивов

 

6

6

12

15

20

Кабинет заведующего лаборато­рией

 

10

12

15

20

Помещение для пробоотборников

 

6

8

8

Местный диспет­черский пункт

Назначается в зависимости от системы

диспетчеризации и автоматизации

 

Кабинет началь­ника станции

 

10

15

15

25

25

Помещение для технического пер­сонала

 

10

15

20

25 (две комнаты

10 и 15)

 

30 (две комнаты

по 15)

Комната дежур­ного персонала

 

8

15

20

25

25

Мастерская текущего ремонта мелкого оборудования

 

10

15

20

25

25

Мастерская при­боров

 

15

15

15

20

20

Библиотека и архив

 

10

20

30

Помещение для хозяйственного инвентаря

 

6

8

8

 

Примечания: 1. Вспомогательные помещения над­лежит размещать в одном здании.

2. Размещение лаборатории в здании насосной и воздухо­дувной станций допускается при условии принятия мер, исключающих передачу вибрации от оборудования на стены здания.

3. Для станций производительностью менее 1,4 тыс. м3/сут состав и площадь помещений устанавливаются в зависимости от местных условий.

 

 

СООРУЖЕНИЯ ДЛЯ МЕХАНИЧЕСКОЙ ОЧИСТКИ

СТОЧНЫХ ВОД

 

Решетки

 

6.16. В составе очистных сооружений следует предусматривать решетки с прозорами не более 16 мм, со стержнями прямоугольной формы или решетки-дробилки.

 

Примечание. Решетки допускается не предусматри­вать в случае подачи сточных вод на очистные сооружения насосами при установке перед насосами решеток с прозорами не более 16 мм или решеток-дробилок, при этом:

длина напорного трубопровода не должна превышать 500 м;

в насосных станциях предусматривается вывоз задер­жанных на решетках отбросов.

 

6.17. Число решеток и решеток-дробилок, скорости протекания жидкости в прозорах, нормы съема отбросов, расстояние между устанавливаемым обо­рудованием и т. д. следует определять согласно пп. 5.125.16.

6.18. Механизированная очистка решеток от отбросов и транспортирование их к дробилкам должны быть предусмотрены при количестве отбросов 0,1 м3/сут и более. При меньшем количестве отбросов допускается установка решеток с ручной очисткой.

6.19. При обосновании отбросы с решеток допускается собирать в контейнеры с герметически за­крывающимися крышками и вывозить в места обработки твердых бытовых и промышленных отходов.

6.20. Дробленые отбросы рекомендуется направ­лять для совместной переработки с осадками очистных сооружений.

6.21. Решетки-дробилки допускается устанавли­вать в каналах без зданий.

6.22. В здании решеток необходимо предусмат­ривать мероприятия, предотвращающие поступление холодного воздуха в помещение через подводящие и отводящие каналы.

6.23. Поп здания решеток надлежит располагать выше расчетного уровня сточной воды в канале не менее чем на 0,5 м.

6.24. Потери напора в решетках следует прини­мать в 3 раза большими, чем для чистых решеток.

6.25. Для монтажа и ремонта решеток, дробилок и другого оборудования необходимо предусматривать установку подъемно-транспортного обору­дования согласно СНиП 2.04.02-84.

Для перемещения контейнеров подъемно-транспортное оборудование должно быть с электроприводом.

 

Песколовки

 

6.26. Песколовки необходимо предусматривать при производительности очистных сооружении свыше 100 м3/сут. Число песколовок или отделений песколовок надлежит принимать не менее двух, причем все песколовки или отделения должны быть рабочими.

Тип песколовки (горизонтальная, тангенциаль­ная, аэрируемая) необходимо выбирать с учетом производительности очистных сооружении, схемы очистки сточных вод и обработки их осадков, характеристики взвешенных веществ, компоновочных решений и т. п.

6.27. При расчете горизонтальных и аэрируемых песколовок следуют определять их длину Ls, м, по формуле       

 

                                                     (17)

 

где Ks — коэффициент, принимаемый по табл. 27;

Hs — расчетная глубина песколовки, м, прини­маемая для аэрируемых песколовок равной половине общей глубины;

vs  скорость движения сточных вод, м/с, принимаемая по табл. 28;

u0 — гидравлическая крупность песка, мм/с, принимаемая в зависимости от требуе­мого диаметра задерживаемых частиц песка


Таблица 27

 

 

Диаметр задерживаемых

 

Гидравлическая крупность

Значение Ks в зависимости от типа песколовок и отношения ширины В к глубине Н аэрируемых песколовок

 

частиц песка, мм

песка u0, мм/с

горизонтальные

аэрируемые

 

 

 

В:Н = 1

В:Н = 1,25

В:Н = 1,5

 

0,15

 

13,2

 

 

2,62

 

2,50

 

2,39

0,20

18,7

1,7

2,43

2,25

2,08

0,25

 

24,2

1,3

 

Таблица 28

 

 

 

Песколовка

 

Гидравлическая крупность песка

Скорость движения сточных вод vs, м/с,

при притоке

 

Глубина Н, м

Количество задерживае­мого песка,

 

Влажность песка, %

Содержание песка

в осад­ке, %

 

u0, мм/с

минимальном

максимальном

 

л/чел.-сут

 

 

 

Горизонтальная

 

18,724,2

 

0,15

 

0,3

 

0,52

 

0,02

 

60

 

5560

Аэрируемая

13,218,7

0,080,12

0,73,5

0,03

9095

Тангенциальная

 

18,724,2

0,5

0,02

60

7075


 

6.28. При проектировании песколовок следует принимать общие расчетные параметры для песко­ловок различных типов по табл. 28:

а) для горизонтальных песколовок — продолжи­тельность протекания сточных вод при максималь­ном притоке не менее 30 с;

б) для аэрируемых песколовок:

установку аэраторов из дырчатых труб — на глубину 0,7 Hs вдоль одной из продольных стен над лотком для сбора песка;

интенсивность аэрациии — 3—5 м3/(м2 × ч);

поперечный уклон дна к песковому лотку 0,20,4;

впуск воды — совпадающий с направлением вращения воды в песколовке, выпуск затоп­ленный;

отношение ширины к глубине отделения — В:Н = 1:1,5;

в) для тангенциальных песколовок:

нагрузку — 110 м3/(м2 × ч) при максимальном притоке;

впуск воды — по касательной на всей расчет­ной глубине;

глубину — равную половине диаметра;

диаметр — не более 6 м.

6.29. Удаление задержанного песка из песколо­вок всех типов следует предусматривать:

вручную — при объеме его до 0,1 м3/сут;

механическим или гидромеханическим способом с транспортированием песка к приямку и последую­щим отводом за пределы песколовок гидроэлева­торами, песковыми насосами и другими способа­ми — при объеме его свыше 0,1 м3/сут.

6.30. Расход производственной воды qh, л/с, при гидромеханическом удалении песка (гидросмы­вом с помощью трубопровода со спрысками, укла­дываемого в песковый лоток) необходимо опреде­лять по формуле

 

                                                   (18)

 

где vh восходящая скорость смывной воды в лотке, принимаемая равной 0,0065 м/с;

lsc — длина пескового лотка, равная длине песколовки за вычетом длины пескового приямка, м;

bsc — ширина пескового лотка, равная 0,5 м.

6.31. Количество песка, задерживаемого в песко­ловках, для бытовых сточных вод надлежит прини­мать 0,02 л/(чел×сут), влажность песка 60%, объем­ный вес 1,5 т/м3.

6.32. Объем пескового приемка следует прини­мать не более двухсуточного объема выпадающего песка, угол наклона стенок приямка к горизонту — не менее 60°.

6.33. Для подсушивания песка, поступающего из песколовок, необходимо предусматривать площадки с ограждающими валиками высотой 1—2 м. Нагруз­ку на площадку надлежит предусматривать не более 3 м32 в год при условии периодического вывоза подсушенного песка в течение года. Допускается применять накопители со слоем напуска песка до 3 м в год. Удаляемую с песковых площадок воду необходимо направлять в начало очистных сооружений.

Для съезда автотранспорта на песковые площад­ки надлежит устраивать пандус уклоном 0,12—0,2.

6.34. Для отмывки и обезвоживания песка допус­кается предусматривать устройство бункеров, при­способленных для последующей погрузки песка в мобильный транспорт. Вместимость бункеров должна рассчитываться на 1,5 5-суточное хранение песка. Для повышения эффективности отмывки песка следует применять бункера в сочетании с напорными гидроциклонами диаметром 300 мм и напором пульпы перед гидроциклоном 0,2 МПа (2 кгс/см2). Дренажная вода из песковых бункеров должна возвращаться в канал перед песколовками.

В зависимости от климатических условий бункер следует размещать в отапливаемом здании или предусматривать его обогрев.

6.35. Для поддержания в горизонтальных песко­ловках постоянной скорости движения сточных вод на выходе из песколовки надлежит предусматривать водослив с широким порогом.

 

Усреднители

 

6.36. При необходимости усреднения состава и расхода производственных сточных вод надлежит предусматривать усреднители.

6.37. Тип усреднителя (барботажный, с механическим перемешиванием, многоканальный) следует выбирать с учетом характера колебаний концентрации загрязняющих веществ (циклические, произвольные колебания и залповые сбросы), а также вида и количества взвешенных веществ.

6.38. Число секции усреднителей необходимо принимать не менее двух, причем обе рабочие.

При наличии в сточных водах взвешенных веществ следует предусматривать мероприятия по предотвращению осаждения их в усреднителе.

6.39. В усреднителях с барботированием или ме­ханическим перемешиванием при наличии в стоках легколетучих ядовитых веществ следует предусматривать перекрытие и вентиляционную систему.

6.40. Усреднитель барботажного типа необходимо применять для усреднения состава сточных вод с содержанием взвешенных веществ до 500 мг/п гидравлической крупностью до 10 мм/с при любом режиме их поступления.

6.41. Объем усреднителя Wz, м3, при залповом сбросе следует рассчитывать по формулам:

 

                при Kav до 5;                        (19)

 

    при Kav = 5 и более, (20)

 

где qw расход сточных вод, м /ч;

tz — длительность залпового сброса, ч;

Kav — требуемый коэффициент усреднения, равный:

 

                                          (21)

 

здесь Сmax концентрация загрязнений в залповом сбросе;

Сmid — средняя концентрация загрязнений в сточных водах;

Сadm концентрация, допустимая по усло­виям работы последующих соору­жений.

6.42. Объем усреднителя Wcir, м3, при циклических колебаниях надлежит рассчитывать по форму­лам:

 

    при Kav до 5;                                (22)

 

    при Kav = 5 и более,                               (23)

 

где tcir период цикла колебаний, ч;

Kav — коэффициент усреднения, опреде­ляемый по формуле (21).

6.43. При произвольных колебаниях объем усред­нителя Wes, м3, следует определять пошаговым расчетом (методом последовательного приближе­ния) по формуле

 

                                                 (24)

 

где Dtst — временной шаг расчета, принимаемый не более 1 ч;

DСex — приращение концентрации на выходе усреднителя за текущий шаг расчета (может быть как положительным, так и отрицательным), г/м3 .

Расчет следует начинать с неблагоприятных участков графика почасовых колебаний.

Если получающийся в результате расчета ряд Сex не удовлетворяет технологическим требова­ниям (например, по максимальной величине Сex), расчет следует повторить при увеличенном Wes. Начальную величину Wes необходимо назначать ориентировочно исходя из оценки общего харак­тера колебаний Сex. График колебаний на входе в усреднитель Cen должен приниматься фактический (по данному производству или аналогу) или по технологическому заданию.

6.44. Распределение сточных вод по площади усреднителя барботажного типа должно быть мак­симально равномерным с использованием системы каналов и подающих лотков с придонными отверстиями или треугольными водосливами при скорости течения в лотке не менее 0,4 м/с.

6.45. Барботирование следует осуществлять через перфорированные трубы, укладываемые строго го­ризонтально вдоль резервуара. При пристенном расположении барботеров расстояние от них до противоположной стены следует принимать 1—1,5h, между барботерами — 2—3h, при промежуточном расположении расстояние барботеров от стены 1—1,5h, где h — глубина погружения барботера. При переменной глубине воды в усреднителе h следует принимать при максимальном уровне.

6.46. При расчете необходимо принимать:

интенсивность барботирования при пристенных барботерах (создающих один циркуляционный по­ток) — 6 м3/ч на 1 м, промежуточных (создающих два циркуляционных потока) — 12 м3/ч на 1 м;

интенсивность барботирования для предотвращения выпадения в осадок взвесей в пристенных барботерах — до 12 м3/ч на 1 м, в промежуточных — до 24 м3/ч на 1 м;

перепад   давления в отверстиях барботера — 14 кПа (0,10,4 м вод. ст.).

6.47. Усреднитель с механическим перемешива­нием следует применять для усреднения состава сточных вод с содержанием взвешенных веществ свыше 500 мг/л при любом режиме их поступления. Подача осуществляется периферийным желобом равномерно по периметру усреднителя.

6.48. Объем усреднителн с механическим пере­мешиванием должен рассчитываться аналогично объему усреднителя барботажного типа.

6.49. Многоканальные усреднители с заданным распределением сточных вод по каналам надлежит применять для выравнивания залповых сбросов сточных вод с содержанием взвешенных веществ гидравлической крупностью до 5 мм/с при концен­трации до 500 мг/л.

6.50. Объем Wav, м3, многоканальных усредни­телей при залповых сбросах высококонцентрированных сточных вод следует рассчитывать по формуле

 

                                             (25)

 

где  qw — расход сточных вод, м3/ч;

tz — длительность залпового сброса, ч;

Kav — коэффициент усреднения.

6.51. Для снижения расчетных расходов сточных вод. поступающих на очистные сооружения, до­пускается устройство регулирующих резервуаров.

6.52. Регулирующие резервуары надлежит раз­мещать после решеток и песколовок с подачей в них сточных вод через разделительную камеру, отделя­ющую расход, превышающий усредненный.

6.53. Конструкцию регулирующих резервуаров следует принимать аналогичной первичным отстой­никам с соответствующими устройствами для удаления осадка и перекачкой осветленной воды на последующие сооружения для ее очистки в часы минимального притока.

6.54. Оптимальную величину зарегулированного расчетного расхода следует определять технико-экономическим расчетом, подбирая последователь­но ряд значений коэффициентов неравномерности после регулирования Кreg, объемов регулирующего резервуара и объемов сооружений для очистки сточных вод и вспомогательных сооружений (воз­духодувной и насосных станций и т. д.).

6.55. Подбор значений коэффициентов неравно­мерности после регулирования Кreg объемов регулирующего резервуара Wreg следует выполнять по соотношениям:

 

                                                        (26)

 

                                                         (27)

 

где Кgen общий коэффициент неравномерности поступления сточных вод;

qmid — среднечасовой расход сточных вод.

Зависимость между greg  и treg допускается при­нимать по табл. 29.

 

Таблица 29

 

greg

 

1

0,95

0,9

0,85

0,8

0,75

0,67

0,65

treg

 

0

0,24

0,5

0,9

1,5

2,15

3,3

4,4

 

6.56. При необходимости усреднения расхода и концентрации сточных вод объем усреднителя и концентрацию загрязняющих веществ необходимо определять пошаговым расчетом.

Приращения объема водной массы DW, м3, и концентрации DС, г/м3, на текущем шаге расчета следует определять по формулам:

 

                                           (28)

 

                                   (29)

 

где qen, qex, расходы сточных вод и концентрации загрязняющих    

      Cen, Cex      веществ на предыдущем шаге расчета;

Wav объем усреднителя в момент расчета, м3.

 

Отстойники

 

6.57. Тип отстойника (вертикальный, радиаль­ный. с вращающимся сборно-распределительным устройством, горизонтальный, двухъярусный и др.) необходимо выбирать с учетом принятой технологи­ческой схемы очистки сточных вод и обработки их осадка, производительности сооружений, очеред­ности строительства, числа эксплуатируемых еди­ниц, конфигурации и рельефа площадки, геологических условий, уровня грунтовых вод и т. п.

6.58. Число отстойников следует принимать: пер­вичных — не менее двух, вторичных не менее трех при условии, что все отстойники являются рабочими. При минимальном числе их расчетный объем необходимо увеличивать в 1,21,3 раза.

6.59. Расчет отстойников, кроме вторичных после биологической очистки, надлежит производить по кинетике выпадения взвешенных веществ с учетом необходимого эффекта осветления.

Желоба двухъярусных отстойников следует рас­считывать из условия продолжительности отстаива­ния 1,5 ч.

Расчет вторичных отстойников надлежит произ­водить согласно пп. 6.160—6.163.

6.60. Расчетное значение гидравлической круп­ности u0, мм/с, необходимо определять по кривым кинетики отстаивания Э = f(t), получаемым экс­периментально, с приведением полученной в лабораторных условиях величины к высоте слоя, равной глубине проточной части отстойника, по формуле

 

                                 (30)

 

где Hset глубина проточной части в отстойни­ке, м;

Kset коэффициент использования объема проточной части отстойника;

tset — продолжительность отстаивания, с, соответствующая заданному эффекту очи­стки и полученная в лабораторном цилиндре в слое h1; для городских сточных вод данную величину допускается принимать по табл. 30;

n2 — показатель степени, зависящий от агло­мерации взвеси в процессе осаждения; для городских сточных вод следует определять по черт. 2.

 

Примечания: 1. Расчет отстойников для сточных вод, содержащих загрязняющие вещества легче воды (нефтепродукты, масла, жиры и т. п.), следует выполнять с учетом гидравлической крупности всплывающих частиц.

2. При наличии в воде частиц тяжелей и легче воды за расчетную надлежит принимать меньшую гидравлическую крупность.

3. В случае, когда температура сточной воды в производственных условиях отличается от температуры воды, при которой определялась кинетика отстаивания, необ­ходимо вводить поправку

 

                                        (31)

 

где mlab , — вязкость воды при соответствующих температурах в

        mpr      лабораторных и производственных условиях;

u0 гидравлическая крупность частиц, полученная по формуле (30), мм/с.

 

Таблица 30

 

 

Эффект осветления, %

Продолжительность отстаивания tset, с, в слое h1 = 500 мм

при концентрации взвешенных веществ, мг/л

 

 

200

300

400

 

20

 

600

 

540

 

480

30

960

900

840

40

1440

1200

1080

50

2160

1800

1500

60

7200

3600

2700

70

 

7200

 

 

Черт. 2. Зависимость показателя степени n2 от исходной концентрации взвешенных веществ в городских сточных водах при эффекте отстаивания

1 Э = 50 %; 2 Э = 60 %; 3 Э = 70 %

 

6.61. Основные расчетные параметры отстойни­ков надлежит определять по табл. 31.

 

Таблица 31

 

 

Отстойник

Коэффициент использования объема Кset

Рабочая глубина части Hset, м

 

Ширина

Bset, м

Скорость рабочего потока

vw, мм/с

Уклон днища к иловому приямку

 

 

Горизонтальный

 

 

0,5

 

1,54

 

2Hset 5Hset

 

510

 

0,0050,05

Радиальный

 

0,45

1,55

510

0,0050,05

Вертикальный

 

0,35

2,73,8

С вращающимся сборно-распределительным устройством

 

0,85

0,81,2

0,05

С нисходяще-восходящим по­током

 

0,65

2,73,8

2uo 3uo

С тонкослойными блоками:

противоточная (прямоточ­ная) схема работы

0,50,7

0,0250,2

26

      перекрестная схема работы

 

0,8

0,0250,2

1,5

0,005

 

Примечания: 1. Коэффициент Кset определяет гидравлическую эффективность отстойника и зависит от конструкции водораспределительных и водосборных устройств; указывается организацией-разработчиком.

2. Величину турбулентной составляющей vtb, мм/с, в зависимости от скорости рабочего потока vw, мм/с, надлежит опреде­лять по табл. 32.

 

 

Таблица 32

 

vw, мм/с

 

5

10

15

vtb, мм/с

 

0

0,05

0,1

 

6.62. Производительность одного отстойника qset, м3/ч, следует определять исходя из заданных гео­метрических размеров сооружения и требуемого эффекта осветления сточных вод по формулам:

а) для горизонтальных отстойников

 

                                                    (32)

 

б) для отстойников радиальных, вертикальных и с вращающимся сборно-распределительным устрой­ством

 

                                                 (33)

 

в) для отстойников с нисходяще-восходящим потоком

 

                                                                 (34)

 

г) для отстойников с тонкослойными блоками при перекрестной схеме работы

 

                                                             (35)

 

д) то же, при противоточной схеме

 

                                                              (36)

 

где Кset коэффициент использования объема, при­нимаемый по табл. 31;

Lset длина секции, отделения, м;

Lbl длина тонкослойного блока (модуля), м;

Bset ширина секции, отделения, м;

Bbl ширина тонкослойного блока, м;

Dset диаметр отстойника, м;

den —диаметр впускного устройства, м;

u0 — гидравлическая крупность задержива­емых частиц, мм/с, определяемая по формуле (30);

vtb турбулентная составляющая, мм/с, при­нимаемая по табл. 32 в зависимости от скорости потока в отстойнике vw, мм/с;

Hbl — высота тонкослойного блока, м;

hti высота яруса тонкослойного блока (мо­дуля), м;

Kdis коэффициент сноса выделенных частиц, принимаемый при плоских пластинах равным 1,2, при рифленых пласти­нах 1.

6.63. Основные конструктивные параметры сле­дует принимать:

а) для горизонтальных и радиальных отстойни­ков:

впуск исходной воды и сбор осветленной — равно­мерными по ширине (периметру) впускного и сбор­ного устройств отстойника;

высоту нейтрального слоя для первичных от­стойников — на 0,3 м выше днища (на выходе из отстойника), для вторичных — 0,3 м и глубину слоя ила 0,30,5 м;

угол наклона стенок илового приямка — 5055°;

б) для вертикальных отстойников:

длину центральной трубы — равной глубине зоны отстаивания;

скорость движения рабочего потока в централь­ной трубе — не более 30 мм/с;

диаметр раструба — 1,35 диаметра трубы;

диаметр отражательного щита 1,3 диаметра раструба;

угол конусности отражательного щита — 146°;

скорость рабочего потока между раструбом и отражательным щитом — не более 20 мм/с для пер­вичных отстойников и не более 15 мм/с для вто­ричных;

высоту нейтрального слоя между низом отража­тельного щита и уровнем осадка — 0,3 м;

угол наклона конического днища — 50—60°;

в) для отстойников с нисходяще-восходящим потоком:

площадь зоны нисходящего потока — равной площади зоны восходящего;

высоту перегородки, разделяющей зоны, — равной 2/3 Hset;

уровень верхней кромки перегородки — выше уровня воды на 0,3 м, но не выше стенки отстой­ника;

распределительный лоток переменного сечения внутри   разделительной   перегородки.   Началь­ное сечение лотка следует рассчитывать на про­пуск расчетного расхода со скоростью не менее 0,5 м/с, в конечном сечении скорость — не менее 0,1 м/с.

Для равномерного распределения воды кромку водослива распределительного лотка следует вы­полнять в виде треугольных водосливов через 0,5 м;

г) для отстойников с тонкослойными блоками угол наклона пластин от 45 до 60°.

6.64. Для повышения степени очистки или для обеспечения возможности увеличения производи­тельности эксплуатируемых станций существующие отстойники {горизонтальные, радиальные, вертикальные) могут быть дополнены блоками из тонко­слойных элементов. В этом случае блоки необходи­мо располагать на выходе воды из отстойника перед водосборным лотком.

6.65. Количество осадка Qmud, м3/ч, выделяе­мого при отстаивании, надлежит определять ис­ходя из концентрации взвешенных веществ в поступающей воде Cen и концентрации взвешенных веществ в осветленной воде Cex:

 

                                      (37)

 

где  qw расход сточных вод, м3/ч;

rmud влажность осадка, %;

gmud плотность осадка, г/см3.

6.66. Исходя из объема образующегося осадка и вместимости зоны накопления его в отстойнике следует определять интервал времени между вы­грузками осадка. При удалении осадка под гидро­статическим давлением вместимость приямка пер­вичных отстойников и вторичных отстойников после биофильтров надлежит предусматривать рав­ной объему осадка, выделенного за период не более 2 сут, вместимость приямка вторичных отстой­ников после аэротенков — не более двухчасового пребывания осадка.

При механизированном удалении осадка вмести­мость зоны накопления его в первичных отстойни­ках надлежит принимать по количеству выпавшего осадка за период не более 8 ч.

6.67. Перемещение выпавшего осадка к при­ямкам надлежит предусматривать механическим способом или созданием соответствующего наклона стенок (не менее 50°).

6.68. Удаление осадка из приямка отстойника надлежит предусматривать самотеком, под гидростатическим давлением, насосами, предназначенны­ми для перекачки жидкости с большим содержанием взвешенных веществ, гидроэлеваторами, эрлифтами, ковшовыми элеваторами, грейфером и т. д.

Гидростатическое давление при удалении осадка из отстойников бытовых сточных вод необходимо принимать, не менее, кПа (м вод. ст.): первичных — 15(1,5), вторичных — 12(1,2) после биофильтров и 9 (0,9) — после аэротенков.

Для вторичных отстойников рекомендуется пред­усматривать возможность изменения высоты гидро­статического напора.

Диаметр труб для удаления осадка необходимо принимать не менее 200 мм.

6.69. Для удержания всплывших загрязняющих веществ перед водосборным устройством следует предусматривать полупогруженные перегородки и удаление накопленных на поверхности воды ве­ществ.

Глубина погружения перегородки под уровень воды должна быть не менее 0,3 м.

Высоту борта отстойника над поверхностью воды надлежит принимать 0,3 м.

6.70. Водоприемные лотки должны быть обору­дованы водосливами с тонкой стенкой. Крепление водослива к лотку должно обеспечивать возможность его регулирования по высоте. Водосливная кромка может быть прямой или с треугольными вырезами. Нагрузка на 1 м водослива не должна превышать 10 л/с.

 

Двухъярусные отстойники

и осветлители-перегниватели

 

6.71. Двухъярусные отстойники надлежит преду­сматривать одинарные или спаренные. В спаренных отстойниках следует обеспечивать возможность из­менения направления движения сточных вод в осадочных желобах.

6.72. Двухъярусные отстойники надлежит проектировать согласно пп. 6.57—6.59, 6.65—6.70. При этом следует принимать:

свободную поверхность водного зеркала для всплывания осадка — не менее 20 % площади от­стойника в плане;

расстояние между стенками соседних осадочных желобов — не менее 0,5 м;

наклон стенок осадочного желоба к горизонту — не менее 50°; стенки должны перекрывать одна другую не менее чем на 0,15 м;

глубину осадочного желоба 1,2—2,5 м, ширину щели осадочного желоба — 0,15 м;

высоту нейтрального слоя от щели желоба до уровня осадка в септической камере — 0,5 м;

уклон конического днища септической камеры — не менее 30°;

влажность удаляемого осадка — 90 %;

распад беззольного вещества осадка — 40 %;

эффективность задержания взвешенных ве­ществ 4050 %.

6.73. Вместимость септической камеры двухъ­ярусных отстойников надлежит определять по табл. 33.

 

Таблица 33

 

Среднезимняя температура сточных вод, °С

 

6

7

8,5

10

12

15

20

Вместимость септической камеры, л/чел.-год

 

110

95

80

65

50

30

15

 

Примечания: 1. Вместимость септической камеры двухъярусных отстойников должна быть увеличена на 70 % при подаче в нее ила из аэротенков на полную очистку и высоконагружаемых биофильтров и на 30 % при подаче ила из отстойников после капельных биофильтров и аэротенков на неполую очистку. Впуск ила должен производиться на глубине 0,5 м ниже щели желобов.

2. Вместимость септической камеры двухъярусных от­стойников для осветления сточной воды при подача ее на по­ля фильтрации допускается уменьшать не более чем на 20 %.

 

 

6.74. При среднегодовой температуре воздуха до 3,5°С двухъярусные отстойники с пропускной способностью до 500 м3/сут должны быть размеще­ны в отапливаемых помещениях, при среднегодовой температуре воздуха от 3,5 до 6 °С и пропускной способности до 100 м3/сут — в неотапливаемых по­мещениях.

6.75. Осветлители-перегниватели следует проек­тировать в виде комбинированного сооружения, состоящего из осветлителя с естественной аэрацией, концентрически располагаемого внутри перегнивателя.

6.76. Осветлители следует проектировать в виде вертикальных отстойников с внутренней камерой флокуляции, с естественной аэрацией за счет раз­ности уровней воды в распределительной чаше и осветлителе.

При проектировании осветлителей необходимо принимать:

диаметр осветлителя — не более 9 м;

разность уровней воды в распределительной чаше и осветлителе — 0,6 м без учета потерь напора в коммуникациях;

вместимость камеры флокуляции — на пребыва­ние в ней сточных вод не более 20 мин;

глубину камеры флокуляции — 4—5 м;

скорость движения воды в зоне отстаивания — 0,8—1,5 мм/с, в центральной трубе — 0,5—0,7 м/с;

диаметр нижнего сечения камеры флокуляции исходя из средней скорости 8—10 мм/с;

расстояние между нижним краем камеры флокуляции и поверхностью осадка в иловой части — не менее 0,6 м;

уклон днища осветлителя — не менее 50;

снижение концентрации загрязняющих веществ по взвешенным веществам — до 70 % и по БПКполн до 15 %.

6.77. При проектировании перегнивателей надле­жит принимать:

вместимость перегнивателя по суточной дозе за­грузки осадка — в зависимости от влажности осадка и среднезимней температуры сточных вод;

суточную дозу загрузки осадка — по табл. 34;

 

Таблица 34

 

Средняя тем­пература сточных вод или осадка, °С

 

6

7

8,5

10

12

15

20

Суточная доза загрузки осад­ка, %

 

0,72

0,85

1,02

1,28

1,7

2,57

5

 

Примечания: 1. Суточная доза загрузки указана для осадка влажностью 95 %. При влажности Pmud, отли­чающейся от 95 %, суточная доза загрузки уточняется умно­жением табличного значения на отношение

 

2. Суточные дозы загрузки осадка производственных сточных вод устанавливаются экспериментально.

 

 

ширину кольцевого пространства между наруж­ной поверхностью стен осветлителя и внутренней поверхностью стен перегнивателя — не менее 0,7 м;

уклон днища — не менее 30°;

разрушение корки гидромеханическим спосо­бом путем подачи осадка d кольцевой трубопро­вод под давлением через сопла, наклоненные под углом 45° к поверхности осадка.

 

Септики

 

6.78. Септики надлежит применять для механи­ческой очистки сточных вод, поступающих на поля подземной фильтрации, в песчано-гравийные фильт­ры, фильтрующие траншеи и фильтрующие колодцы.

6.79. Полный расчетный объем септика надлежит принимать: при расходе сточных вод до 5 м3/сут не менее 3-кратного суточного притока, при расходе свыше 5 м3/сут — не менее 2,5-кратного.

Указанные расчетные объемы септиков следует принимать исходя из условия очистки их не менее одного раза в год.

При среднезимней температуре сточных вод выше 10 °С или при норме водоотведения свыше 150 л/сут на одного жителя полный расчетный объем септика допускается уменьшать на 15—20 %.

6.80. В зависимости от расхода сточных вод сле­дует принимать: однокамерные септики — при рас­ходе сточных вод до 1 м3/сут, двухкамерные — до 10 и трехкамерные — свыше 10 м3/сут.

6.81. Объем первой камеры следует принимать: в двухкамерных септиках — 0,75, в трехкамерных — 0,5 расчетного объема. При этом объем второй и третьей камер надлежит принимать по 0,25 расчет­ного объема.

В септиках, выполняемых из бетонных колец. все камеры следует принимать равного объема. В таких септиках при производительности свыше 5 м3/сут камеры надлежит предусматривать без отделений.

6.82. При необходимости обеззараживания сточ­ных вод, выходящих из септика, следует преду­сматривать контактную камеру, размер которой в плане надлежит принимать не менее 0,75х1 м.

6.83. Лоток подводящей трубы должен быть расположен не менее чем на 0,05 м выше расчетного уровня жидкости в септике. Необходимо преду­сматривать устройства для задержания плавающих веществ и естественную вентиляцию.

6.84. Выпуски из зданий должны присоединяться к септикам через смотровые колодцы.

 

Гидроциклоны

 

6.85. Для механической очистки сточных вод от взвешенных  веществ  допускается   применять открытые и напорные гидроциклоны.

6.86. Открытые гидроциклоны необходимо при­менять для выделения всплывающих и оседающих грубодисперсных примесей гидравлической круп­ностью свыше 0,2 мм/с и скоагулированной взвеси.

Напорные гидроциклоны следует применять для выделения из сточных вод грубодисперсных приме­сей главным образом минерального происхождения.

Гидроциклоны могут быть использованы в про­цессах осветления сточных вод, сгущения осадков, обогащения известкового молока, отмывки песка от органических веществ, в том числе нефтепродук­тов.

При осветлении сточных вод аппараты малых раз­меров обеспечивают больший эффект очистки. При сгущении осадков минерального происхождения следует применять гидроциклоны больших диамет­ров (свыше 150 мм).

6.87. Удельную    гидравлическую    нагрузку qhc, м3/(м2×ч), для открытых гидроциклонов сле­дует определять по формуле

 

                               (38)

 

где u0 — гидравлическая крупность частиц, ко­торые необходимо выделить для обес­печения требуемого эффекта, мм/с;

Khc коэффициент пропорциональности, за­висящий от типа гидроциклона и рав­ный для гидроциклонов:

без внутренних устройств — 0,61;

с конической диафрагмой и внутрен­ним цилиндром 1,98;

многоярусного с центральными выпусками

 

                               (39)

 

здесь nti число ярусов;

Dhc — диаметр гидроциклона, м;

den диаметр окружности, на которой рас­полагаются раструбы выпусков, м; многоярусного с периферийным отбо­ром осветленной воды

 

                                 (40)

 

здесь n’ti число пар ярусов;

dd  — диаметр отверстия средней диафрагмы пары ярусов, м.

6.88. Производительность    одного    аппарата Qhc, м3/ч, следует определять по формуле

 

                                       (41)

 

6.89. Удаление выделенного осадка из открытых гидроциклонов следует предусматривать непрерывное под гидростатическим давлением, гидроэлевато­рами или механизированными средствами.

Всплывающие примеси, масла и нефтепродукты необходимо задерживать полупогруженной перего­родкой.

6.90. Расчет напорных гидроциклонов надлежит производить исходя из крупности задерживаемых частиц d и их плотности.

Диаметр гидроциклона D’hc следует определять по табл. 35.

6.91. Основные размеры напорного гидроциклона следует подбирать поданным заводов-изготовителей.

Давление на входе в напорный гидроциклон над лежит принимать:

0,150,4 МПа (1,54 кгс/см2) при одноступенчатых схемах осветления и сгущения осадков и многоступенчатых установках, работающих с раз­рывом струи;

0,350,6 МПа (3,56 кгс/см2) при много­ступенчатых схемах, работающих без разрыва струи.

Число резервных аппаратов следует принимать:

при очистке сточных вод и уплотнении осадков, твердая фаза которых не обладает абразивными свойствами, один при числе рабочих аппаратов до 10, два — при числе до 15 и по одному на каждые десять при числе рабочих аппаратов свыше 15;

при очистке сточных вод и осадков с абразивной твердой фазой — 25 % числа рабочих аппаратов.

6.92. Производительность напорного гидроцикло­на Q’hc, м3/ч, назначенных размеров следует рас­считывать по формуле

 

                                   (42)

 

где g — ускорение силы тяжести, м/с2;

DP потери давления в гидроциклоне. МПа;

den, dex диаметры питающего и сливного патрубков, мм.

6.93. В зависимости от требуемой эффективности очистки сточных вод и степени сгущения осадков обработка в напорных гидроциклонах может осу­ществляться в одну. Две или три ступени путем последовательного соединения аппаратов с раз­рывом и без разрыва струи.

Для сокращения потерь воды с удаляемым осад ком шламовый патрубок гидроциклона первой

 

Таблица 35

 

D’hc, мм

 

 

25

 

40

 

60

 

80

 

100

 

125

 

160

 

200

 

250

 

320

 

400

 

500

d, мм

 

825

1030

1535

1840

2050

2560

3070

3585

40110

45150

50170

55200

 

ступени следует герметично присоединять к шла­мовому резервуару.

На первой ступени следует использовать гидро­циклоны больших размеров для задержания основ­ной массы взвешенных веществ и крупных частиц взвеси, которые могут засорить гидроциклоны малых размеров, используемые на последующих ступенях установки.

 

Центрифуги

 

6.94. Осадительные центрифуги непрерывного или периодического действия следует применить для выделения из сточных вод мелкодисперсных взвешенных веществ, когда для их выделения не могут быть применены реагенты, а также при необ­ходимости извлечения из осадка ценных продуктов и их утилизации.

Центрифуги непрерывного действия следует при­менять для очистки сточных вод с расходом до 100 м3/ч, когда требуется выделить частицы гидрав­лической крупностью 0,2 мм/с (противоточные) и 0,05 мм/с (прямоточные); центрифуги периоди­ческого действия для очистки сточных вод, расход которых не превышает 20 м3/ч, при необхо­димости выделения частиц гидравлический круп­ностью 0,050,01 мм/с.

Концентрация механических загрязняющих ве­ществ не должна превышать 2—3 г/л.

6.95. Подбор необходимого типоразмера осадительной центрифуги необходимо производить по величине требуемого фактора разделения Fr, при котором обеспечивается наибольшая степень очист­ки. Фактор разделения Fr и продолжительность цен­трифугирования tcf, с, следует определять по резуль­татам экспериментальных данных, полученных в ла­бораторных условиях.

6.96. Объемную производительность центрифуги Qcf, м3/ч, надлежит рассчитывать по формуле

 

                                                      (43)

 

где Wcf объем ванны ротора центрифуги, м3;

Kcf — коэффициент использования объема центрифуги,   принимаемый   равным 0,40,6.

 

Флотационные установки

 

6.97. Флотационные установки надлежит приме­нять для удаления из воды взвешенных веществ, ПАВ, нефтепродуктов, жиров, масел, смол и других веществ, осаждение которых малоэффективно.

6.98. Флотационные установки также допускает­ся применять:

для удаления загрязняющих веществ из сточных вод перед биологической очисткой;

для отделения активного ила во вторичных отстойниках;

для глубокой очистки биологически очищенных сточных вод;

при физико-химической очистке с применением коагулянтов и флокулянтов;

в схемах повторного использовании очищенных вод.

6.99. Напорные, вакуумные, безнапорные, элек­трофлотационные установки надлежит применять при очистке сточных вод с содержанием взвешенных веществ свыше 100—150 мг/л (с учетом твердой фазы, образующейся при добавлении коагулянтов). При меньшем содержании взвесей для фракциони­рования в пену ПАВ, нефтепродуктов и др. и для пенной сепарации могут применяться установки импеллерные, пневматические и с диспергированием воздуха через пористые материалы.

6.100. Для осуществления процесса разделения фаз допускается применять прямоугольные (с горизонтальным и вертикальным движением воды) и круглые (с радиальным и вертикальным движе­нием воды) флотокамеры. Объем флотокамер складывается из объемов рабочей зоны (глубина 1,0—3,0 м), зоны формирования и накопления пены (глубина 0,2—1,0 м), зоны осадка (глубина 0,5—1,0 м). Гидравлическая нагрузка — 3—6 м3/(м2×ч). Число флотокамер должно быть не менее двух, все камеры рабочие.

6.101. Для повышения степени задержания взве­шенных веществ допускается использовать коа­гулянты и флокулянты. Вид реагента и его доза зависят от физико-химических свойств обраба­тываемой воды и требовании к качеству очистки.

6.102. Влажность и объем пены (шлама) зависят от исходной концентрации взвешенных и других загрязняющих веществ и от продолжительности накопления ее на поверхности (периодический или непрерывный съем). Периодический съем следует применять в напорных, безнапорных и электрофло­тационных установках. Расчетную влажность пены следует принимать, %: при непрерывном съеме — 9698; при периодическом съеме с помощью скребков транспортеров или вращающихся скреб­ков — 94—95; при съеме шнеками и скребковыми тележками — 92—93. В осадок выпадает от 7 до 10 % задержанных веществ при влажности 95—98 %. Объем пены (шлама) Wmud при влажности 94—95 % может быть определен по формуле (% к объему обрабатываемой воды)

 

                                                (44)

 

где Cen — исходная концентрация нерастворенных примесей, г/л.

6.103. При проектировании установок импеллерных, пневматических и с диспергированием воздуха через пористые материалы необходимо принимать:

продолжительность флотации — 20—30 мин;

расход воздуха при работе в режиме флотации — 0,10,5 м33;

расход воздуха при работе в режиме пенной сепарации 34 м33 (50200 л на 1 г извлекае­мых ПАВ) или 3050 м3/(м2×ч);

глубину воды в камере флотации — 1,5—3 м;

окружную скорость импеллера — 10—15 м/с;

камеру для импеллерной флотации — квадратную со стороной, равной 6D (D — диаметр импеллера 200750 мм);

скорость выхода воздуха из сопел при пневмати­ческой флотации —100—200 м/с;

диаметр сопел — 1—1 ,2 мм;

диаметр отверстий пористых пластин 4—20 мкм;

давление воздуха под пластинами — 0,1—0,2 МПа (12 кгс/см2).

6.104. При проектировании напорных флотацион­ных установок следует принимать:

продолжительность флотации — 20—30 мин;

количество подаваемого воздуха, л на 1 кг из­влекаемых загрязняющих веществ: 40 — при исход­ной их концентрации Cen < 200 мг/л, 28 — при Cen = 500, 20 при Cen = 1000 мг/л, 15 при Cen = 34  г/л;

схему флотации — с рабочей жидкостью, если прямая флотация не обеспечивает подачу воздуха в нужном количестве;

флотокамеры с горизонтальным движением воды при производительности до 100 м3/ч, с вертикаль­ным — до 200, с радиальным до 1000 м3/ч;

горизонтальную скорость движения воды в пря­моугольных и радиальных флотокамерах — не более 5 мм/с;

подачу воздуха через эжектор во всасывающий патрубок насоса — при небольшой высоте всасывания (до 2 м) и незначительных колебаниях уровня воды в приемном резервуаре (0,5—1,0 м), компрессором в напорный бак — в остальных случаях.

 

Дегазаторы

 

6.105. Для удаления растворенных газов, находя­щихся в сточных водах в свободном состоянии, над­лежит применять дегазаторы с барботажным сло­ем жидкости, с насадкой различной формы и полые распылительные (разбрызгивающие) аппараты.

6.106. Работа дегазаторов допускается при атмос­ферном давлении или под вакуумом. Для интенси­фикации процесса в дегазатор следует вводить воз­дух или инертный газ.

6.107. Количество вводимого воздуха на один объем дегазируемой воды при работе под вакуумом или атмосферном давлении следует принимать соответственно для аппаратов:

с насадкой — 3 и 5 объемов;

барботажного — 5 и 12—15 объемов;

распылительного — 10 и 20 объемов.

6.108. Высоту рабочего слоя насадки следует при­нимать от 2 до 3 м, барботажного слоя — не более 3 м, в распылительном аппарате — 5 м. В качестве насадки допускается применять кислотоупорные керамические кольца размером 25х25х4 мм или деревянные хордовые насадки.

6.109. Для колонных дегазаторов отношение вы­соты рабочего слоя к диаметру аппарата должно быть не более 3 при работе под вакуумом и не более 7 при атмосферном давлении, для барботажных аппа­ратов отношение длины к ширине не более 4.

6.110. Аппараты с насадкой надлежит применять при содержании взвешенных веществ в дегазируе­мой воде не более 500 мг/л, барботажные и распы­лительные — при большем их содержании.

6.111. Для распределения жидкости в аппаратах надлежит использовать центробежные насадки с вы­ходным отверстием 10х20 мм.

6.112. Количество удаляемого газа Wg, м3, следует определять по формуле

 

                                                  (45)

 

где Ff общая поверхность контакта фаз, м2;

Kx коэффициент массопередачи, отнесенный к единице поверхности контакта фаз или по­перечного сечения аппарата и принимае­мый по данным научно-исследовательских организаций.

 

СООРУЖЕНИЯ ДЛЯ БИОЛОГИЧЕСКОЙ ОЧИСТКИ

СТОЧНЫХ ВОД

 

Преаэраторы и биокоагуляторы

 

6.113. Преаэраторы и биокоагуляторы следует применять:

для снижения содержания загрязняющих веществ в отстоенных сточных водах сверх обеспечиваемого первичными отстойниками;

для извлечения (за счет сорбции) ионов тяжелых металлов и других загрязняющих веществ, неблаго­приятно влияющих на процесс биологической очистки.

6.114. Преаэраторы надлежит предусматривать перед первичными отстойниками в виде отдельных пристроенных или встроенных сооружений, биокоагуляторы — в виде сооружений, совмещенных с вер­тикальными отстойниками.

6.115. Преаэраторы следует применять на стан­циях очистки с аэротенками, биокоагуляторы — на станциях очистки как с аэротенками, так и с биологическими фильтрами.

6.116. При проектировании преаэраторов и биокоагуляторов необходимо принимать:

число секций отдельно стоящих преаэраторов — не менее двух, причем все рабочие;

продолжительность аэрации сточной воды с из­быточным активным илом — 20 мин;

количество подаваемого ила — 50—100 % избыточ­ного, биологической пленки — 100 %;

удельный расход воздуха — 5 м на 1 м3 сточных вод;

увеличение эффективности задержания загряз­няющих веществ (по БПКполн и взвешенным ве­ществам) в первичных отстойниках на 20—25 %;

гидравлическую нагрузку на зону отстаивания биокоагуляторов не более 3 м3/(м2×ч).

 

Примечания: 1. В преаэратор надлежит подавать ил после регенераторов. При отсутствии регенераторов необхо­димо предусматривать возможность регенерации активного ила в преаэраторах; вместимость отделений для регенерации следует принимать равной 0,25—0,3 их общего объема.

2. Для биологической пленки, подаваемой в биокоагуляторы, надлежит предусматривать специальные регенера­торы с продолжительностью аэрации 24 ч.

 

Биологические фильтры

 

Общие указания

 

6.117. Биологические фильтры (капельные и высоконагружаемые) надлежит применять для биологической очистки сточных вод.

6.118. Биологические фильтры для очистки произ­водственных сточных вод допускается применять как основные сооружения при одноступенчатой схеме очистки или в качестве сооружений первой или второй ступени при двухступенчатой схеме биологической очистки.

6.119. Биологические фильтры следует проекти­ровать в виде резервуаров со сплошными стенками и двойным дном: нижним — сплошным, а верхним — решетчатым (колосниковая решетка) для поддер­жания загрузки. При этом необходимо принимать: высоту междудонного пространства — не менее 0,6 м; уклон нижнего днища к сборным лоткам не менее 0,01; продольный уклон сборных лотков — по конструктивным соображениям, но не менее 0,005.

6.120. Капельные биофильтры следует устраивать с естественной аэрацией, высоконагружаемые — как с естественной, так и с искусственной аэрацией (аэрофильтры).

Естественную аэрацию биофильтров надлежит предусматривать через окна, располагаемые равно­мерно по их периметру в пределах междудонного пространства и оборудуемые устройствами, позволяющими закрывать их наглухо. Площадь окон должна составлять 1 —5 % площади биофильтра.

В аэрофильтрах необходимо предусматривать по­дачу воздуха в междудонное пространство вентиляторами с давлением у ввода 980 Па (100 мм вод. ст.). На отводных трубопроводах аэрофильтров необходимо предусматривать устройство гидравлических затворов высотой 200 мм.

6.121. В качестве загрузочного материала для биофильтров следует применить щебень или галь­ку прочных горных пород, керамзит, а также пласт­массы, способные выдержать температуру от 6 до 30 ° С без потери прочности. Все применяемые для загрузки естественные и искусственные материалы, за исключением пластмасс, должны выдерживать:

давление не менее 0,1 МПа (1 кгс/см2) при насыпной плотности до 1000 кг/м3;

не менее чем пятикратную пропитку насыщен­ным раствором сернокислого натрия;

не менее 10 циклов испытаний на морозостой­кость;

кипячение в течение 1 ч в 5 %-ном растворе соля­ной кислоты, масса которой должна превышать массу испытуемого материала в 3 раза.

После испытаний загрузочный материал не должен иметь заметных повреждений и его масса не должна уменьшаться более чем на 10 % первона­чальной.

Требования к пластмассовой загрузке биофильт­ров следует принимать согласно п. 6.138.

6.122. Загрузка фильтров по высоте должна быть выполнена из материала одинаковой крупности с устройством нижнего поддерживающего слоя вы­сотой 0,2 м, крупностью 70—100 мм.

Крупность загрузочного материала для биофильт­ров следует принимать по табл. 36.

6.123. Распределение сточных вод по поверхности биофильтров надлежит осуществлять с помощью устройств различной конструкции.

При проектировании разбрызгивателей следует принимать:

начальный свободный напор — около 1,5 м, ко­нечный — не менее 0,5 м;

диаметр отверстий — 13—40 мм;

высоту расположения головки над поверхностью загрузочного материала — 0,15—0,2 м;

продолжительность орошения на капельных био­фильтрах при максимальном притоке воды 5—6 мин.

При проектировании реактивных оросителей сле­дует принимать:

число и диаметр распределительных труб — по расчету при условии движения жидкости в начале труб со скоростью 0,5—1 м/с;

число и диаметр отверстий в распределительных трубах по расчету при условии истечении жидкости из отверстий со скоростью не менее 0,5 м/с, диамет­ры отверстий — не менее 10 мм;

напор у оросителя — по расчету, но не менее 0,5 м;

расположение распределительных труб выше поверхности загрузочного материала на 0,2 м.

6.124. Число секций или биофильтров должно быть не менее двух и не более восьми, причем все они должны быть рабочими.

6.125. Расчет распределительной и отводящей се­тей биофильтров должен производиться по макси­мальному расходу воды с учетом рециркуляционного расхода, определяемого согласно п. 6.132.

6.126. В конструкции оборудования фильтров должны быть предусмотрены устройства для опо­рожнения на случай кратковременного прекраще­ния подачи сточной воды зимой, а также устройства для промывки днища биофильтров.

6.127. В зависимости от климатических условий района строительства, производительности очистных сооружений, режима притока сточных вод, их тем­пературы биофильтры надлежит размещать либо в помещениях (отапливаемых или неотапливаемых), либо на открытом воздухе.

Возможность размещения биофильтров вне помещения или в неотапливаемом помещении должна быть обоснована теплотехническим расчетом, при

 

Таблица 36

 

Биофильтры (загружаемый материал)

Крупность материала загрузки, мм

Количество материала, % (по весу), остающегося на контрольных ситах с отверстиями диаметром, мм

 

 

70

55

40

30

25

20

 

Высоконагружаемые (щебень)

 

4070

 

05

 

4070

 

95100

 

 

 

Капельные (щебень)

2540

05

4070

90100

Капельные (керамзит)

2040

-

08

Не нормируется

 

90100

 

Примечание. Содержание кусков пластинчатой формы в загрузке не должно быть свыше 5 %.

 

этом необходимо учитывать опыт эксплуатации со­оружений, работающих в аналогичных условиях.

 

Капельные биологические фильтры

 

6.128. При БПКполн сточных вод Len > 220 мг/л, подаваемых на капельные биофильтры, надлежит предусматривать рециркуляцию очищенных сточных вод; при БПКполн 220 мг/л и менее необходимость рециркупиции устанавливается расчетом.

6.129. Для капельных биофильтров надлежит при­нимать:

рабочую высоту Hbf = 1,5—2 м;

гидравлическую нагрузку qbf = 1—3 м3/(м2×сут);

БПКполн очищенной воды Lex = 15 мг/л.

6.130. При расчете капельных биофильтров вели­чину qbf при заданных Len и Lex, мг/л, температуре воды Tw следует определять по табл. 37, где  .

 


Таблица 37

 

Гидравлическая нагрузка

Коэффициент Kbf при температурах Tw, °С, и высоте Hbf, м

qbf, м3/(м2×сут)

Tw = 8

Tw = 10

Tw = 12

Tw = 14

 

Hbf = 1,5

Hbf = 2

Hbf = 1,5

Hbf = 2

Hbf = 1,5

Hbf = 2

Hbf = 1,5

Hbf = 2

 

1

 

8

 

11,6

 

9,8

 

12,6

 

10,7

 

13,8

 

11,4

 

15,1

1,5

5,9

10,2

7

10,9

8,2

11,7

10

12,8

2

4,9

8,2

5,7

10

6,6

10,7

8

11,5

2,5

4,3

6,9

4,9

8,3

5,6

10,1

6,7

10,7

3

 

3,8

6

4,4

7,1

6

8,6

5,9

10,2

 

Примечание. Если значение Kbf превышает табличное, то необходимо предусмотреть рециркуляцию.


 

6.131. Количество избыточной биопленки, выноси­мой из капельных биофильтров, следует принимать 8 г/(чел×сут) по сухому веществу, влажность плен­ки 96 %.

 

Высоконагружаемые биологические фильтры

 

Аэрофильтры

 

6.132. БПКполн сточных вод, подаваемых на аэрофильтры, не должна превышать 300 мг/л. При большей БПКполн необходимо предусматривать рециркуляцию очищенных сточных вод. Коэффици­ент рециркуляции Krc следует определять по фор­муле

 

                                             (46)

 

где Lmix — БПКполн смеси исходной и циркулирую­щей воды, при этом Lmix — не более 300 мг/л;

Len, Lex БПКполн соответственно исходной и очищенной сточной воды.

6.133. Для аэрофильтров надлежит принимать:

рабочую высоту Haf = 2—4 м;

гидравлическую нагрузку qaf = 10—30 м3/(м2×сут);

удельный расход воздуха qa = 8—12 м33 с учетом рециркуляционного расхода.

6.134. При расчете аэрофильтров допустимую величину qaf, м3/(м2×сут), при заданных qa и Haf следует определять по табл. 38, где

.

Площадь аэрофильтров Faf, м2, при очистке без рециркуляции необходимо рассчитывать по приня­той гидравлической нагрузке qaf, м3/(м2×сут), и суточному расходу сточных вод Q, м3/сут.

При очистке сточных вод с рециркуляцией пло­щадь аэрофильтра Faf, м2, надлежит определять по формуле

 


Таблица 38

 

 

 

Коэффициент Kaf при Tw, °С, Haf, м, и qaf, м3/(м2×сут)

 

qa,

м33

Haf, м

Tw = 8

 

Tw = 10

Tw = 12

Tw = 14

 

 

qaf  = 10

 

qaf  = 20

qaf  = 30

qaf  = 10

qaf  = 20

qaf  = 30

qaf  = 10

qaf  = 20

qaf  = 30

qaf  = 10

qaf  = 20

qaf  = 30

 

8

 

2

 

3,02

 

2,32

 

2,04

 

3,38

 

2,55

 

2,18

 

3,76

 

2,74

 

2,36

 

4,3

 

3,02

 

2,56

 

3

5,25

3,53

2,89

6,2

3,96

3,22

7,32

4,64

3,62

8,95

5,25

4,09

 

4

 

9,05

5,37

4,14

10,4

6,25

4,73

11,2

7,54

5,56

12,1

9,05

6,54

 

10

 

2

 

3,69

 

2,89

 

2,58

 

4,08

 

3,11

 

2,76

 

4,5

 

3,36

 

2,93

 

5,09

 

3,67

 

3,16

 

3

6,1

4,24

3,56

7,08

4,74

3,94

8,23

5,31

4,36

9,9

6,04

4,84

 

4

 

10,1

6,23

4,9

12,3

7,18

5,68

15,1

8,45

6,88

16,4

10

7,42

 

12

 

2

 

4,32

 

3,88

 

3,01

 

4,76

 

3,72

 

3,28

 

5,31

 

3,98

 

3,44

 

5,97

 

4,31

 

3,7

 

3

7,25

5,01

4,18

8,35

5,55

4,78

9,9

6,35

5,14

11,7

7,2

5,72

 

4

 

12

7,35

5,83

14,8

8,5

6,2

18,4

10,4

7,69

23,1

12

8,83

 

Примечание. Для промежуточных значений qa, Haf и Tw допускается величину Kaf определять интерполяцией.


 

 

                                             (47)

 

6.135. Количество  избыточной биологической пленки, выносимой из высоконагружаемых биофильтров, надлежит принимать 28 г/(чел×сут) по сухому веществу, влажность 96 %.

6.136. Расчет биофильтров для очистки производственных сточных вод допускается выполнять по табл. 37 и 38 или по окислительной мощности, определяемой экспериментально.

 

Биофильтры с пластмассовой загрузкой

 

6.137. БПКполн сточных вод, подаваемых на биофильтры с пластмассовой загрузкой, допускается принимать не более 250 мг/л.

6.138. Для биофильтров с пластмассовой загрузкой надлежит принимать:

рабочую высоту Hpf = 3—4 м;

в качестве загрузки — блоки из поливинилхлорида, полистирола, полиэтилена, полипропилена, полиамида, гладких или перфорированных пластмассовых груб диаметром 50—100 мм или засыпные элементы в виде обрезков груб длиной 50—150 мм, диаметром 3075 мм с перфорированными, гофрированными и гладкими стенками;

пористость загрузочного материала — 9396 %, удельную поверхность — 90—110 м23;

естественную аэрацию.

В случае возможного прекращения притока сточных вод на биофильтр необходимо предусматривать рециркуляцию сточных вод во избежание высыха­ния биопленки на поверхности загрузки.

6.139. При расчете биофильтров с пластмассовой загрузкой надлежит определять:

гидравлическую нагрузку qpf, м3/(м3×сут) в соответствии с необходимым эффектом очистки Э, %, температурой сточных вод Tw, °С, и принятой высотой Hpf, м, по табл. 39;

объем загрузки и площадь биофильтров по гид­равлической нагрузке и расходу сточных вод.

 

Таблица 39

 

 

Эффект очистки

Гидравлическая нагрузка qpf, м3/(м3×сут),

при высоте загрузки Hpf, м

 

Э, %

Hpf = 3

Hpf = 4

 

Температура сточных вод Tw, °С

 

 

8

10

12

14

8

10

12

14

 

90

 

6,3

 

6,8

 

7,5

 

8,2

 

8,3

 

9,1

 

10

 

10,9

85

8,4

9,2

10

11

11,2

12,3

13,5

14,7

80

 

10,2

11,2

12,3

13,3

13,7

15

16,4

17,9

 

Аэротенки

 

6.140. Аэротенки различных типов следует при­менять для биологической очистки городских и про­изводственных сточных вод.

Аэротенки, действующие по принципу вытеснителей, следует применять при отсутствии залповых поступлений токсичных веществ, а также на второй ступени двухступенчатых схем.

Комбинированные сооружения типа аэротенков-отстойников (аэроакселераторы, окситенки, флототенки, аэротенки-осветлители и др.) при обоснова­нии допускается применять на любой ступени биологической очистки.

6.141. Регенерацию активного ила необходимо предусматривать при БПКполн поступающей в аэротенки воды свыше 150 мг/л, а также при наличии в воде вредных производственных примесей.

6.142. Вместимость аэротанков необходимо опре­делять по среднечасовому поступлению воды за период аэрации в часы максимального притока.

Расход циркулирующего активного ила при расчете вместимости аэротенков без регенераторов и вторичных отстойников не учитывается.

6.143. Период аэрации tatm, ч, в аэротенках, ра­ботающих по принципу смесителей, следует опреде­лить по формуле

 

                                (48)

 

где  Len БПКполн поступающей в аэротенк сточной воды (с учетом снижения БПК при первичном отстаивании), мг/л;

Lex БПКполн очищенной воды, мг/л;

ai доза ила, г/л, определяемая технико-экономическим расчетом с учетом работы вторичных отстойников;

s — зольность   ила,  принимаемая   по табл. 40;

r удельная скорость окисления, мг БПКполн на 1 г беззольного вещест­ва ила в 1 ч, определяемая по фор­муле

 

                         (49)

 

здесь rmax максимальная скорость окисления, мг/(г×ч), принимаемая по табл. 40;

CO концентрация растворенного кислорода, мг/л;

Kl константа, характеризующая свойст­ва органических загрязняющих ве­ществ, мг БПКполн/л, и принимаемая по табл. 40;

КО — константа, характеризующая влияние кислорода, мг О2/л, и принимаемая по табл. 40;

j — коэффициент ингибирования продук­тами распада активного ила, л/г, при­нимаемый по табл. 40.

 

Примечания: 1. Формулы (48) и (49) справедли­вы при среднегодовой температуре сточных вод 15 °С. При иной среднегодовой температуре сточных вод Tw продол­жительность аэрации, вычисленная по формуле (48), долж­на быть умножена на отношение 15/Tw.

2. Продолжительность аэрации во всех случаях не долж­на быть менее 2 ч.

 

Таблица 40

 

 

Сточные воды

rmax,

мг БПКполгн/(г×ч)

Kl,

мг БПКполн

КО,

мг О2

j,

л/г

s

 

 

Городские

 

85

 

33

 

0,625

 

0,07

 

0,3

Производственные:

   а) нефтеперерабатывающих заводов:

       I система

 

 

 

33

 

 

 

3

 

 

 

1,81

 

 

 

0,17

 

 

 

       II    

59

24

1,66

0,158

   6) азотной промышленности

140

6

2,4

1,11

   в) заводов синтетического каучука

80

30

0,6

0,06

0,15

   г) целлюлозно-бумажной промышленности:

       сульфатно-целлюлозное произ-водство

 

 

650

 

 

100

 

 

1,5

 

 

2

 

 

0,16

       сульфитно-целлюлозное          

700

90

1,6

2

0,17

   д) заводов искусственного волокна (вискозы)

90

35

0,7

0,27

   в) фабрик первичной обработки шерсти:

       I ступень

 

 

32

 

 

156

 

 

 

 

0,23

 

 

       II     

6

33

0,2

   ж) дрожжевых заводов

232

90

1,66

0,16

0,35

   з) заводов органического синтеза

83

200

1,7

0,27

   и) микробиологической промышленности:

       производство лизина

 

 

280

 

 

28

 

 

1,67

 

 

0,17

 

 

0,15

                          биовита и витамицина

1720

167

1,5

0,98

0,12

   к) свинооткормочных комплексов:

       I ступень

 

454

 

55

 

1,65

 

0,176

 

0,25

       II    

 

15

72

1,68

0,171

0,3

 

Примечание. Для других производств указанные параметры следует принимать по данным научно-исследовательских организаций.

 

 

6.144. Период аэрации tatv, ч, в аэротенках-вытеснителях надлежит рассчитывать по формуле

 

     (50)

 

где Kp коэффициент, учитывающий влияние продольного перемешивания: Kp = 1,5 при биологической очистке до Lex = 15 мг/л; Kp  = 1,25 при Lex > 30 мг/л;

Lmix БПКполн, определяемая с учетом раз­бавления рециркуляционным расходом:

 

                                         (51)

 

здесь Ri степень рециркуляции активного ила, определяемая по формуле (52); обо­значения величин ai, rmax, CO, Len, Lex, Kl, KO, j, s, следует принимать по фор­муле (49).

 

Примечание. Режим вытеснения обеспечивается при отношении длины коридоров l к ширине b свыше 30. При l/b < 30 необходимо предусматривать секционирование коридоров с числом ячеек пять-шесть.

 

6.145. Степень рециркуляции активного ила Ri, в аэротенках следует рассчитывать по формуле

 

                                                                (52)

 

где   ai доза ила в аэротенке, г/л;

Ji — иловый индекс, см3/г.

 

Примечания: 1. Формула справедлива при Ji < 175 см3/г и ai до 5 г/л.

2. Величина Ri должна быть не менее 0,3 для отстойни­ков с илососами, 0,4 — с илоскребами, 0,6 — при самотеч­ном удалении ила.

 

6.146. Величину илового индекса необходимо оп­ределять экспериментально при разбавлении иловой смеси до 1 г/л в зависимости от нагрузки на ил. Для городских и основных видов производственных сточных вод допускается определять величину Ji по табл. 41.

 

Таблица 41

 

 

Сточные воды

Иловый индекс Ji, см3/г,

при нагрузке на ил qi, мг/(г×сут)

 

 

100

200

300

400

500

600

 

Городские

 

 

130

 

100

 

70

 

80

 

95

 

130

Производственные:

   а) нефтеперераба­тывающих за­водов

 

 

 

120

 

70

 

80

 

120

 

160

   б) заводов синте­тического кау­чука

 

100

40

70

100

130

   в) комбинатов ис­кусственного волокна

 

300

200

250

280

400

   г) целлюлозно-бумажных ком­бинатов

 

220

150

170

200

220

   д) химкомбинатов азотной промышлен­ности

 

90

60

75

90

120

 

Примечание. Для окситенков величина Ji должна быть снижена в 1,3—1,5 раза.

 

Нагрузку на ил qi, мг БПКполн на 1 г беззольно­го вещества ила в сутки, надлежит рассчитывать по формуле

 

                                           (53)

 

где tat период аэрации, ч.

6.147. При проектировании аэротенков с регене­раторами продолжительность окисления органичес­ких загрязняющих веществ tO, ч, надлежит опреде­лять по формуле

 

                                        (54)

 

где Ri — следует определять по формуле (52);

ar доза ила в регенераторе, г/л, определяе­мая по формуле

 

                                            (55)

 

r — удельная скорость окисления для аэро­тенков — смесителей и вытеснителей, оп­ределяемая по формуле (49) при дозе ила ar.

Продолжительность обработки воды в аэротенке tat, ч, необходимо определять по формуле

 

                                                (56)

 

Продолжительность регенерации tr, ч, надлежит определять по формуле

 

                                                         (57)

 

Вместимость аэротенка Wat, м3, следует опреде­лять по формуле

 

                                       (58)

 

где qw — расчетный расход сточных вод, м3/ч.

Вместимость регенераторов Wr, м3, следует опре­делять по формуле

 

                                                   (59)

 

6.148. Прирост активного ила Pi, мг/л, в аэротенках надлежит определять по формуле

 

                                               (60)

 

где Ccdp — концентрация взвешенных веществ в сточной воде, поступающей в аэротенк, мг/л;

Kg коэффициент прироста; для городских и близких к ним по составу производст­венных сточных вод Kg = 0,3; при очист­ке сточных вод в окситенках величина Kg снижается до 0,25.

6.149. Необходимо  предусматривать возмож­ность работы аэротенков с переменным объемом ре­генераторов.

6.150. Для аэротенков и регенераторов надлежит принимать:

число секций — не менее двух;

рабочую глубину 36 м, свыше при обосно­вании;

отношение ширины коридора к рабочей глуби­не — от 1:1 до 2:1.

6.151. Аэраторы в аэротенках допускается приме­нять:

мелкопузырчатые — пористые керамические и пластмассовые материалы (фильтросные пластины, трубы, диффузоры) и синтетические ткани;

среднепузырчатые — щелевые и дырчатые трубы;

крупнопузырчатые — трубы с открытым кон­цом;

механические и пневмомеханические.

6.152. Число аэраторов в регенераторах и на пер­вой половине длины аэротенков-вытеснителей над­лежит принимать вдвое больше, чем на остальной длине аэротенков.

6.153. Заглубление аэраторов следует принимать в соответствии с давлением воздуходувного обору­дования и с учетом потерь в разводящих коммуника­циях и аэраторах (см. п. 5.34).

6.154. В аэротенках необходимо предусматривать возможность опорожнения и устройства для выпус­ка воды из аэраторов.

6.155. При необходимости в аэротенках надлежит предусматривать мероприятия по локализации пе­ны — орошение водой через брызгала или примене­ние химических антивспенивателей.

Интенсивность разбрызгивания при орошении следует принимать по экспериментальным данным.

Применение   химических   антивспенивателей должно быть согласовано с органами санитарно-эпи­демиологической службы и охраны рыбных запасов.

6.156. Рециркуляцию активного ила следует осу­ществлять эрлифтами или насосами.

6.157. Удельный расход воздуха qair, м33 очи­щаемой воды, при пневматической системе аэрации надлежит определять по формуле

 

                                   (61)

 

где  qO — удельный расход кислорода воздуха, мг на 1 мг снятой БПКполн, принимаемый при очистке до БПКполн 15—20 мг/л — 1,1, при очистке до БПКполн свыше 20 мг/л 0.9;

K1 — коэффициент, учитывающий тип аэрато­ра и принимаемый для мелкопузырчатой аэрации в зависимости от соотноше­ния площадей аэрируемой зоны и аэро­тенка faz /fat по табл. 42; для среднепузырчатой и низконапорной K1 = 0,75;

K2 коэффициент, зависимый от глубины погружения аэраторов ha и принимае­мый по табл. 43;

KT коэффициент, учитывающий температу­ру сточных вод. который следует опре­делять по формуле

 

                                 (62)

 

здесь Tw — среднемесячная температура воды за летний период, °С;

K3 — коэффициент качества воды, принимае­мый для городских сточных вод 0,85; при наличии СПАВ принимается в зави­симости от величины faz /fat по табл. 44, для производственных сточных вод — по опытным данным, при их отсутствии допускается принимать K3 = 0,7;

Ca растворимость кислорода воздуха в во­де, мг/л, определяемая по формуле

 

                                         (63)

 

здесь CT — растворимость кислорода в воде в за­висимости от температуры и атмосфер­ного давления, принимаемая по спра­вочным данным;

ha глубина погружения аэратора, м;

CO — средняя концентрация кислорода в аэротенке, мг/л; в первом приближении СО допускается принимать 2 мг/л и не­обходимо уточнять на основе технико-экономических расчетов с учетом фор­мул (48) и (49).

Площадь аэрируемой зоны для пневматических аэраторов включает просветы между ними до 0,3 м.

Интенсивность аэрации Ja, м3/(м2×ч), надлежит определять по формуле

 

                                                     (64)

 

где  Hat рабочая глубина аэротенка, м;

tat период аэрации, ч.

Если вычисленная интенсивность аэрации свыше Ja,max для принятого значения K1, необходимо уве­личить площадь аэрируемой зоны; если менее Ja,min для принятого значения K2 — следует увели­чить расход воздуха, приняв Ja,min по табл. 43.

6.158. При подборе механических, пневмомеханических и струйных аэраторов следует исходить из их производительности по кислороду, определенной при температуре 20 °С и отсутствии растворенного в воде кислорода, скорости потребления и массообменных свойств жидкости, характеризуемых коэффициентами KT и K3 и дефицитом кислорода (Ca CO) /Ca и определяемых по п. 6.157.

Число аэраторов Nma Для аэротенков и биологи­ческих прудов следует определять по формуле

 

                               (65)

 

где  Wat объем сооружения, м3;

Qma производительность аэратора по кисло­роду, кг/ч, принимаемая по паспортным данным;

tat продолжительность пребывания жидкости в сооружении, ч; значения осталь­ных параметров следует принимать по формуле (61).

 

Примечание. При определенном числе механичес­ких аэраторов необходимо проверять их перемешивающую способность по поддержанию активного ила во взвешенном состоянии. Зону действия аэратора следует определять рас­четом; ориентировочно она составляет 5—6 диаметров рабочего колеса.

 

6.159. Окситенки рекомендуется применять при условии подачи технического кислорода от кисло­родных установок промышленных предприятий. Допускается применение их и при строительстве кислородной станции в составе очистных сооруже­ний.

Окситенки должны быть оборудованы механичес­кими аэраторами, легким герметичным перекрыти­ем, системой автоматической подпитки кислорода и продувки газовой фазы, что должно обеспечивать эффективность использования кислорода 90 %.

Для очистки производственных сточных вод и их

 

Таблица 42

 

faz /fat

 

0,05

0,1

0,2

0,3

0,4

0,5

0,75

1

K1

 

1,34

1,47

1,68

1,89

1,94

2

2,13

2,3

Ja max, м3/(м2×ч)

 

5

10

20

30

40

50

75

100

 

Таблица 43

 

ha, м

 

0,5

0,6

0,7

0,8

0,9

1

3

4

5

6

K2

 

0,4

0,46

0,6

0,8

0,9

1

2,08

2,52

2,92

3,3

Ja,min, м3/(м2×ч)

 

48

42

38

32

28

24

4

3,5

3

2,5

 

Таблица 44

 

faz /fat

 

0,05

0,1

0,2

0,3

0,4

0,5

0,75

1

K3

 

0,59

0,59

0,64

0,66

0,72

0,77

0,88

0,99

 

смеси с городскими сточными водами следует при­менять окситенки, совмещенные с илоотделителем. Объем зоны аэрации окситенка надлежит рассчиты­вать по формулам (48) и (49). Концентрацию кислорода в иловой смеси окситенка следует прини­мать в пределах 6—12 мг/л, дозу ила — 6—10 г/л.

 

Вторичные отстойники. Илоотделители

 

6.160. Нагрузку на поверхность вторичных от­стойников qssb, м3/(м2×ч), после биофильтров всех типов следует рассчитывать по формуле

 

                                              (66)

 

где u0 — гидравлическая крупность биопленки; при полной биологической очистке u0 = 1,4 мм/с; значения коэффициента Kset, следует принимать по п. 6.61 .

При определении площади отстойников необхо­димо учитывать рециркуляционный расход.

6.161. Вторичные отстойники всех типов после аэротенков надлежит рассчитывать по гидравличес­кой нагрузке qssa, м3/(м2×ч), с учетом концентра­ции активного ила в аэротенке ai, г/л, его индекса Ji, см3/г, и концентрации ила в осветленной воде at, мг/л, по формуле

 

                               (67)

 

где Kss — коэффициент использования объема зоны отстаивания, принимаемый для ради­альных отстойников 0,4, вертикаль­ных 0,35, вертикальных с периферий­ным выпуском — 0,5, горизонтальных — 0,45;

at следует принимать не менее 10 мг/л,

ai — не более 15 г/л.

6.162. Конструктивные параметры отстойников надлежит принимать согласно пп. 6.61—6.63.

6.163. Нагрузку на 1 м сборного водослива осветленной воды следует принимать не более 810 л/с.

6.164. Гидравлическую нагрузку на илоотделители для окситенков или аэротенков-отстойников, ра­ботающих в режиме осветлителей со взвешенным осадком, зависящую от параметра aiJi, следует при­нимать по табл. 45.

 

Таблица 45

 

aiJi

 

100

200

300

400

500

600

qms, м3/(м2×ч)

 

5,6

3,3

1,8

1.2

0,8

0,7

 

6.165. Расчет флотационных установок для разде­ления иловой смеси надлежит вести в зависимости от требуемой степени осветления по содержанию взвешенных веществ согласно табл. 46.

 

Таблица 46

 

 

Параметр

Содержание взвешенных веществ, мг/л

 

 

15

10

5

 

Продолжительность флотации, мин

 

 

40

 

50

 

60

Удельный расход воздуха, л/кг взвешенных веществ ила

 

4

6

9

 

Давление в напорном резервуаре следует прини­мать 0,6—0,9 МПа (6—9 кгс/см2), продолжитель­ность насыщения 3—4 мин.

 

Аэрационные установки на полное окисление

(аэротенки с продленной аэрацией)

 

6.166. Аэрационные установки на полное окисле­ние следует применять для биологической очистки сточных вод.

Перед подачей сточных вод на установку необхо­димо предусматривать задержание крупных механи­ческих примесей.

6.167. Продолжительность аэрации в аэротенках на полное окисление следует определять по форму­ле (48), при этом надлежит принимать:

r среднюю скорость окисления по БПКполн 6 мг/(г×ч);

ai — дозу ила — 3—4 г/л;

s — зольность ила 0,35.

Удельный расход воздуха следует определять по формуле (61), при этом надлежит принимать:

qO удельный расход кислорода, мг/мг снятой БПКполн —1,25;

K1, K2, KT, K3, Ca по данным, приведенным в п. 6.157.

6.168. Продолжительность пребывания сточных вод в зоне отстаивания при максимальном притоке должна составлять не менее 1 ,5 ч.

6.169. Количество избыточного активного ила следует принимать 0,35 кг на 1 кг БПКполн. Удале­ние избыточного ила допускается предусматривать как из отстойника, так и из аэротенка при достиже­нии дозы ила 5—6 г/л.

Влажность ила, удаляемого из отстойника, рав­на 98 %, из аэротенка 99,4 %.

6.170. Нагрузку на иловые площадки следует принимать как для осадков, сброженных в мезофильных условиях.

 

Циркуляционные окислительные каналы

 

6.171. Циркуляционные окислительные каналы (ЦОК) следует предусматривать для биологической очистки сточных вод в районах с расчетной зимней температурой наиболее холодного периода не ниже минус 25 °С.

6.172. Продолжительность аэрации надлежит оп­ределять по формуле (48) , при этом следует прини­мать r среднюю скорость окисления по БПКполн 6 мг/(г×ч).

6.173. Для циркуляционных окислительных кана­лов следует принимать:

форму канала в плане О-образной;

глубину — около 1 м;

количество избыточного активного ила — 0,4 кг на 1 кг БПКполн;

удельный расход кислорода — 1,25 мг на 1 мг снятой БПКполн.

6.174. Аэрацию сточных вод в окислительных ка­налах следует предусматривать механическими аэра­торами, устанавливаемыми в начале прямого участ­ка канала.

Размеры аэраторов и параметры их работы надле­жит принимать по паспортным данным в зависимости от производительности по кислороду и скорости воды в канале.

6.175. Скорость течении воды в канале vcc, м/с, создаваемую аэратором, надлежит определять по формуле

 

                              (68)

 

где Jair — импульс давления аэратора, принимае­мый по характеристике аэратора;

lair длина аэратора, м;

vcc площадь живого сечения канала, м2;

n1 — коэффициент шероховатости; для бе­тонных стенок n1 = 0,014;

R — гидравлический радиус, м;

lcc длина канала, м;

åx — сумма коэффициентов местных сопро­тивлений;  для О-образного канала åx 0,5.

Длину аэратора необходимо принимать не менее ширины канала по дну и не более ширины канала по зеркалу воды, число аэраторов — не менее двух.

6.176. Выпуск смеси сточных вод с активным илом из циркуляционных каналов во вторичный от­стойник следует предусматривать самотеком, про­должительность пребывания сточных вод во вторич­ном отстойнике по максимальному расходу — 1,5 ч.

6.177. Из вторичного отстойника следует преду­сматривать непрерывную подачу возвратного актив­ного ила в канал, подачу избыточного ила на иловые площадки — периодически.

6.178. Иловые площадки следует рассчитывать исходя из нагрузок для осадка, сброженного в мезофильных условиях.

 

Поля фильтрации

 

6.179. Поля фильтрации для полной биологичес­кой очистки сточных вод надлежит предусматри­вать, как правило, на песках, супесях и легких су­глинках.

Продолжительность отстаивания сточных вод пе­ред поступлением их на поля фильтрации следует принимать не менее 30 мин.

6.180. Площадки для полей фильтрации необхо­димо выбирать: со спокойным и слабовыраженным рельефом с уклоном до 0,02; с расположением ни­же течения грунтового потока от сооружений для забора подземных вод на расстоянии, равном величи­не радиуса депрессионной воронки, но не менее 200 м для легких суглинков, 300 м — для супесей и 500 м — для песков.

При расположении полей фильтрации выше по те­чению грунтового потока расстояние их до сооруже­ний для забора подземных вод следует принимать с учетом гидрогеологических условий и требований санитарной охраны источника водоснабжения.

На территориях, граничащих с местами выклинивания водоносных горизонтов, а также при наличии трещиноватых пород и карстов, не перекрытых водоупорным споем, размещение полей фильтрации не допускается.

6.181. Нагрузку сточных вод на поля фильтрации надлежит принимать на основании данных опыта эксплуатации полей фильтрации, находящихся в аналогичных условиях.

Нагрузку бытовых и близких к ним по составу производственных сточных вод допускается принимать по табл. 47.

 

Таблица 47

 

 

Грунты

 

Среднегодовая температура воздуха, °С

Нагрузка сточных вод, м3/(га×сут)

при залегании грунтовых вод на глубине, м

 

 

 

1,5

2

3

 

Легкие суглинки

 

От 0 до 3,5

 

 

55

 

60

 

Св. 3,5 до  6

70

75

 

                   6      11

75

85

 

            Св. 11

 

85

100

 

Супеси

 

От 0 до 3,5

 

80

 

85

 

100

 

Св. 3,5 до 6

90

100

120

 

                 6      11

100

110

130

 

            Св. 11

 

120

130

150

 

Пески

 

От 0 до 3,5

 

120

 

140

 

180

 

Св. 3,5 до 6

150

175

225

 

                 6       11

160

190

235

 

             Св. 11

 

180

210

250

 

Примечания: 1. Нагрузка указана для районов со среднегодовым количеством атмосферных осадков от 300 до 500 мм.

2. Нагрузку необходимо уменьшать для районов со среднегодовым количеством атмосферных осадков: 500—700 мм — на 15—25 %; свыше 700 мм, а также для I кли­матического района и IIIА климатического подрайона — на 25—30 %, при этом больший процент снижения нагрузки надлежит принимать при легких суглинистых, а меньший — при песчаных грунтах.

 

 

6.182. Площадь полей фильтрации в необходи­мых случаях надлежит проверять на намораживание сточных вод. Продолжительность намораживания следует принимать равной числу дней со среднесуточной температурой воздуха ниже минус 10 °С.

Величину фильтрации сточных вод в период их намораживания необходимо определять с уменьше­нием на величину коэффициента, приведенного в табл. 48.

 

Таблица 48

 

Грунты

Коэффициент снижения величины фильтрации

в период намораживания

 

Легкие суглинки

 

0,3

Супеси

0,45

Пески

 

0,55

 

6.183. Необходимо предусматривать резервные карты, площадь которых должна быть обоснована в каждом отдельном случае и не должна превышать полезной площади полей фильтрации, %:

в III и IV климатических районах — 10;

во II климатическом районе — 20;

в I                „                  „       25.

6.184. Дополнительную площадь для устройства сетей, дорог, оградительных валиков, древесных на­саждений допускается принимать в размере до 25 % при площади попей фильтрации свыше 1000 га и до 35 % при площади их 1000 га и менее.

6.185. Размеры карт полей фильтрации надлежит определять в зависимости от рельефа местности, об­щей рабочей площади полей, способа обработки поч­вы. При обработке тракторами площадь одной карты должна быть не менее 1 ,5 га.

Отношение ширины карты к длине следует при­нимать от 1:2 до 1:4; при обосновании допускается увеличение длины карты.

6.186. На картах полей фильтрации, предназначен­ных для намораживания сточных вод, следует пре­дусматривать выпуски талых вод на резервные карты.

6.187. Устройство дренажа (открытого или за­крытого) на полях фильтрации обязательно при за­легании грунтовых вод на глубине менее 1,5 м от поверхности карт независимо от характера грунта, а также и при большей глубине залегания грунтовых вод, при неблагоприятных фильтрационных свойствах грунтов, когда одни осушительные канавы (без устройства закрытого дренажа) не обеспечи­вают необходимого понижения уровня грунтовых вод.

6.188. При полях фильтрации надлежит преду­сматривать душевую, помещении для сушки спецодежды, для отдыха и приема пищи. На каждые 75—100 га площади полей фильтрации следует предусматривать будки для обогрева обслуживающего персонала.

 

Поля подземной фильтрации

 

6.189. Поля подземной фильтрации следует при­менять в песчаных и супесчаных грунтах, при распо­ложении оросительных труб выше уровня грунто­вых вод не менее чем на 1 м и заглублении их не бо­лее 1,8 м и не менее 0,5 м от поверхности земли. Оросительные трубы рекомендуется укладывать на слой подсыпки толщиной 20—50 см из гравия, мел­кого хорошо спекшегося котельного шлака, щебня или крупнозернистого песка.

Перед полями подземной фильтрации надлежит предусматривать установку септиков.

6.190. Общая длина оросительных труб определя­ется по нагрузке в соответствии с табл. 49. Длину отдельных оросителей следует принимать не более 20 м.

 

Таблица 49

 

 

Грунты

Среднегодовая температура воздуха, °С

Нагрузка, л/сут на 1 м оросительных труб полей подземной фильтрации, в зависимости от глубины наивысшего уровня грунтовых вод от лотка, м

 

 

 

1

2

3

 

Пески

 

До 6

 

16

 

20

 

22

 

От 6,1 до 11

20

24

27

 

Св. 11,1

 

22

26

30

 

Супеси

 

До 6

 

8

 

10

 

12

 

От 6,1 до 11

10

12

14

 

Св. 11,1

 

11

13

16

 

Примечания: 1. Нагрузка указана для районов со среднегодовым количеством атмосферных осадков до 500 мм.

2. Нагрузку необходимо уменьшать, для районов со среднегодовым количеством осадков 500—600 мм — на 10—20 %, свыше 600 мм на 2030 %; для I климатического района и IIIА климатического подрайона — на 15 %. При этом больший процент снижения надлежит принимать при супесчаных грунтах, меньший при песчаных.

3. При наличии крупнозернистой подсыпки толщиной 20—50 см нагрузку следует принимать с коэффициентом 1,21,5.

4. При удельном водоотведении свыше 150 л/сут на од­ного жителя или для объектов сезонного действия нормы нагрузок следует увеличивать на 20 %.

 

 

6.191. Для притока воздуха следует предусматри­вать на концах оросительных труб стояки диамет­ром 100 мм, возвышающиеся на 0,5 м над уровнем земли.

 

Песчано-гравийные фильтры

и фильтрующие траншеи

 

6.192. Песчано-гравийные фильтры и фильтрую­щие траншеи при количестве сточных вод не более 15 м3/сут следует проектировать в водонепроницае­мых и слабофильтрующих грунтах при наивысшем уровне грунтовых вод на 1 м ниже лотка отводящей дрены.

Перед сооружениями необходимо предусматри­вать установку септиков.

Очищенную воду следует или собирать в накопи­тели (с целью использования ее на орошение), или сбрасывать в водные объекты с соблюдением Пра­вил охраны поверхностных вод от загрязнения сточными водами" и Правил санитарной охраны при­брежных вод морей".

Расчетную длину фильтрующих траншей следует принимать в зависимости от расхода сточных вод и нагрузки на оросительные трубы, но не более 30 м, ширину траншеи понизу — не менее 0,5 м.

6.193. Песчано-гравийные фильтры надлежит про­ектировать в одну или две ступени. В качестве за­грузочного материала одноступенчатых фильтров следует принимать крупно- и среднезернистый песок и другие материалы.

Загрузочным материалом в первой ступени двух­ступенчатого фильтра могут быть гравий, щебень, котельный шлак и другие материалы крупностью, принимаемой согласно п. 6.122, во второй ступени — аналогично одноступенчатому фильтру.

В фильтрующих траншеях в качестве загрузочно­го материала следует принимать крупно- и среднезернистый песок и другие материалы.

6.194. Нагрузку из оросительные трубы песчано гравийных фильтров и фильтрующих траншей, а также толщину слон загрузки следует принимать по табл. 50.

 

Таблица 50

 

 

Сооружение

Высота слоя загрузки, м

Нагрузка на оросительные трубы, л/(м×сут)

 

Одноступенчатый песчано-гравийный фильтр или вторая сту­пень двухступенчатого фильтра

 

Первая ступень двухступенча­того фильтра

 

Фильтрующая траншея

 

 

1 1,5

 

 

 

1 1,5

 

 

0,8 1

 

80 100

 

 

 

150 200

 

 

50 70

 

Примечания: 1. Меньшие нагрузки соответствуют меньшей высоте.

2. Нагрузки указаны для районов со среднегодовой тем­пературой воздуха от 3 до 6 °С.

3. Для районов со среднегодовой температурой воздуха выше 6 °С нагрузку следует увеличивать на 20—30 %, ниже 3 °С уменьшать на 2030 %.

4. При удельном водоотведении свыше 150 л/(чел×сут) нагрузку следует увеличивать на 20—30 %.

 

 

Фильтрующие колодцы

 

6.195. Фильтрующие колодцы надлежит устраи­вать только в песчаных и супесчаных грунтах при количестве сточных вод не более 1 м3/сут. Основа­ние колодца должно быть выше уровня грунтовых вод не менее чем на 1 м.

 

Примечания: 1. При использовании подземных вод для хозяйственно-питьевого водоснабжения возможность устройства фильтрующих колодцев решается в зависимости от гидрогеологических условий и по согласованию с органа­ми Министерства геологии и санитарно-эпидемиологической службой.

2. Перед колодцами необходимо предусматривать сеп­тики.

 

6.196. Фильтрующие колодцы следует проектиро­вать из железобетонных колец, кирпича усиленного обжига или бутового камня. Размеры а плане должны быть не более 2х2 м, глубина — 2,5 м.

Ниже подводящей трубы следует предусматри­вать:

донный фильтр высотой до 1 м из гравия, щебня, спекшегося шлака и других материалов — внутри колодца;

обсыпку из тех же материалов — у наружных сте­нок колодца;

отверстия для выпуска профильтровавшейся во­ды — в стенках колодца.

В покрытии колодца надлежит предусматривать люк диаметром 700 мм и вентиляционную трубу ди­аметром 100 мм.

6.197. Расчетную фильтрующую поверхность ко­лодца надлежит определять как сумму площадей дна и поверхности стенки колодца на высоту фильтра. Нагрузка на 1 м2 фильтрующей поверхности должна приниматься 80 л/сут в песчаных грунтах и 40 л/сут в супесчаных.

Нагрузку следует увеличивать: на 10—20 % — при устройстве фильтрующих колодцев в средне- и крупнозернистых песках или при расстоянии между основанием колодца и уровнем грунтовых вод свы­ше 2 м; на 20 % — при удельном водоотведении свыше 150 л/(чел×сут) и среднезимней температуре сточ­ных вод выше 10 °С.

Для объектов сезонного действия нагрузка может быть увеличена на 20 %.

 

Биологические пруды

 

6.198. Биологические пруды надлежит применять для очистки и глубокой очистки городских, произ­водственных и поверхностных сточных вод, содер­жащих органические вещества.            

6.199. Биологические пруды допускается проек­тировать как с естественной, так и с искусственной аэрацией (пневматической или механической).

6.200. При очистке в биологических прудах сточ­ные воды не должны иметь БПКполн свыше 200 мг/л для прудов с естественной аэрацией и свыше 500 мг/л — для прудов с искусственной аэра­цией.

При БПКполн свыше 500 мг/л следует предусмат­ривать предварительную очистку сточных вод.

6.201. В пруды для глубокой очистки допускает­ся направлять сточную воду после биологической или физико-химической очистки с БПКполн не более 25 мг/л — для прудов с естественной аэрацией и не более 50 мг/л — для прудов с искусственной аэра­цией.

6.202. Перед прудами для очистки надлежит пре­дусматривать решетки с прозорами не более 16 мм и отстаивание сточных вод в течение не менее 30 мин.

После прудов с искусственной аэрацией необхо­димо предусматривать отстаивание очищенной воды в течение 2—2,5 ч.

6.203. Биологические пруды следует устраивать на нефильтрующих или слабофильтрующих грунтах. При неблагоприятных в фильтрационном отношении грунтах следует осуществлять противофильтрационные мероприятия.

6.204. Биологические пруды следует располагать с подветренной по отношению к жилой застройке стороны господствующего направления ветра в теп­лое время года. Направление движения воды в пру­де должно быть перпендикулярным этому направле­нию ветра.

6.205. Биологические пруды следует проектиро­вать не менее чем из двух параллельных секций с 3—5 последовательными ступенями а каждой, с воз­можностью отключения любой секции пруда для чистки или профилактического ремонта без наруше­ния работы остальных.

6.206. Отношение длины к ширине пруда с естест­венной аэрацией должно быть не менее 20. При меньших отношениях надлежит предусматривать конструкции впускных и выпускных устройств, обеспечивающие движение воды по всему живому сечению пруда.

6.207. В прудах с искусственной аэрацией отно­шение сторон секций может быть любым, при этом аэрирующие устройства должны обеспечивать дви­жение воды в любой точке пруда со скоростью не менее 0,05 м/с. Форма прудов в плане зависит от ти­па аэраторов: для пневматических или механичес­ких пруды могут быть прямоугольными, для само­движущихся механических круглыми.

6.208. Отметка лотка перепускной трубы из од­ной ступени в другую должна быть выше дна на 0,30,5 м.

Выпуск очищенной воды следует осуществлять через сборное устройство, расположенное ниже уровня воды на 0,15—0,2 глубины пруда.

6.209. Хлорировать воду следует, как правило, после прудов. В отдельных случаях (при длине про. кладки трубопровода хлорной воды свыше 500 м или необходимости строительства отдельной хлораторной и т. п.) допускается хлорирование перед прудами.

Концентрация остаточного хлора в воде после контакта не должна превышать 0,25—0,5 г/м3.

6.210. Рабочий объем пруда надлежит определять по времени пребывания а нем среднесуточного рас­хода сточных вод.

6.211. Время пребывания воды в пруде с естест­венной аэрацией tlag, сут, следует определять по формуле              

 

                               (69)

 

где N число последовательных ступеней пруда;

Klag коэффициент объемного использования каждой ступени пруда;

K’lag то же, последней ступени;

Klog и K’log принимаются для искусствен­ных прудов с отношением длины секций к ширине 20:1 и более 0,80,9, при отношении 1:1 — 3:1 или для прудов, построенных на основе естественных мест­ных водоемов (озер, запруд и т. п,), — 0,35, для промежуточных случаев опре­деляются интерполяцией;

Len БПКполн воды, поступающей в данную сту­пень пруда;

L’en — то же, для последней ступени;

Lex БПКполн воды, выходящей из данной ступе­ни пруда;

L’ex то же, для последней ступени;

Lfin остаточная БПКполн, обусловленная внутриводоемными процессами и принимаемая ле­том 23 мг/л (для цветущих прудов до 5 мг/л), зимой 12 мг/л;

k — константа скорости потребления кислорода, сут; для производственных сточных вод ус­танавливается экспериментальным путем; для городских и близких к ним по составу производственных сточных вод при отсутствии экспериментальных данных k для всех промежуточных секций очистного пруда мо­жет быть принята равной 0,1 сут1, для пос­ледней ступени k’ = 0,07 сут1 (при темпе­ратуре воды 20 °С).

Для прудов глубокой очистки k следует прини­мать, сут1: для 1-й ступени — 0,07; для 2-й ступе­ни — 0,06; для остальных ступеней пруда — 0,05—0,04; для одноступенчатого пруда k = 0,06 сут1.

Для температур воды, отличающихся от 20 °С, значение k должно быть скорректировано по форму­лам:

 

для температуры воды от 5 до 30 °С

 

                                               (70)

 

для температуры воды от 0 до 5 °С

 

                              (71)

 

где  k — коэффициент, определяемый в лабора­торных условиях при температуре воды 20 °С.

6.212. Общую площадь зеркала воды пруда Flag, м2, с естественной аэрацией надлежит определять по формуле

 

                                (72)

 

где Qw расход сточных вод, м3 сут;

Ca — следует определять по формуле (63);

Cex концентрация кислорода, которую не­обходимо поддерживать в воде, выхо­дящей из пруда, мг/л;

ra величина атмосферной аэрации при де­фиците кислорода, равном единице, принимаемая 3—4 г/(м2×сут);

Len,, Lex, Klag — следует принимать по формуле (69).

6.213. Расчетную глубину пруда Hlag, м, с естест­венной аэрацией следует определять по формуле

 

                                       (73)

 

Рабочая глубина пруда не должна превышать, м: при Len свыше 100 мг/л — 0,5, при Len до 100 мг/л — 1; для прудов глубокой очистки с Len от 20 до 40 мг/л 2, с Len до 20 мг/л 3. При возмож­ности замерзания пруда зимой Н должна быть уве­личена на 0,5 м.

6.214. Время пребывания воды t’lag, сут, глубокой очистки в пруде с искусственной аэрацией надлежит определять по формуле

 

                                         (74)

 

где kd — динамическая константа скорости по­требления кислорода, равная:

 

kd = b1 k ,                                (75)

 

здесь b1 — коэффициент, зависящий от скорости vlag, м/с, движения аоды в пруде, созда­ваемой аэрирующими устройствами или перемещением воды по коридорам лабиринтного типа; величина b1, определяется по формуле

 

                                                 (76)

 

Если vlag > 0,05 м/с, то b1 = 7.

6.215. Для повышения глубины очистки воды до БПКполн 3 мг/л и снижения содержания а ней био­генных элементов (азота и фосфора) рекомендует­ся применение в пруде высшей водной растительности — камыша, рогоза, тростника и др. Высшая вод­ная растительность должна быть размешена в по­следней секции пруда.

Площадь, занимаемую высшей водной раститель­ностью, допускается определять по нагрузке, состав­ляющей 10 000 м3/сут на 1 га при плотности посад­ки 150—200 растений на 1 м2.

 

СООРУЖЕНИЯ ДЛЯ НАСЫЩЕНИЯ

ОЧИЩЕННЫХ СТОЧНЫХ ВОД КИСЛОРОДОМ

 

6.216. При необходимости дополнительного насы­щения очищенных сточных вод кислородом перед спуском их в водный объект следует предусматри­вать специальные устройства: при наличии свободно­го перепада уровней между площадкой очистных со­оружений и горизонтом воды в водном объекте — многоступенчатые водосливы-аэраторы, быстротоки и др., в остальных случаях — барботажные сооруже­ния.

6.217. При проектировании водосливов-аэраторов следует принимать:

водосливные отверстия — в виде тонкой зубчатой стенки с зубчатым щитом над ней (зубья стенки и щита обращены один к другому остриями);

высоту зубьев — 50 мм, угол при вершине — 90°;

высоту отверстия между остриями зубьев — 50 мм;

длину колодца нижнего бьефа — 4 м, глубину — 0,8 м;

удельный расход воды — qw = 120 — 160 л/с на 1 м длины водослива;

напор воды на водосливе hw, м (от середины зуб­чатого отверстия), — по формуле

 

                                                       (77)

 

6.218. Число ступеней водосливов-аэраторов Nwa и величина перепада уровней zst, м, на каждой сту­пени, необходимые для обеспечения потребной кон­центрации кислорода Cex, мг/л, в сточной воде на выпуске в водный объект, определяются последова­тельным подбором из соотношения

 

                              (78)

 

где Ca — растворимость кислорода в жидкости, определяемая по п. 6.157;

Cex — концентрация кислорода в очищенной сточной жидкости, которая должна быть обеспечена на выпуске в водоем;

Cs концентрация кислорода в сточной воде перед сооружением для насыщения; при отсутствии данных Cs = 0;

Nwa число ступеней водосливов;

KT, K3 — коэффициенты, принимаемые по п. 6.157;

j20 — коэффициент, учитывающий эффектив­ность аэрации на водосливах в зависи­мости от перепада уровней и принимае­мый по табл. 51.

 

Таблица 51

 

zst, м

 

0,4

0,5

0,6

0,7

0,8

j20

 

0,71

0,65

0,59

0,55

0,52

 

6.219. При проектировании барботажных соору­жений надлежит принимать:

число ступеней — 3—4;

аэраторы — мелкопузырчатые или среднепузырчатые;

расположение аэраторов — равномерное по дну сооружения;

интенсивность аэрации — не более 100 м3/(м2×ч).

6.220. Удельный расход воздуха в барботажных сооружениях qb, м33, следует определять по фор­муле

 

                   (79)

 

где Nb — число ступеней аэрации;

Ca, K1, следует принимать по п. 6.157;

K2, K3, KT, Cex, Cs следует принимать по п. 6.218.

 

ОБЕЗЗАРАЖИВАНИЕ СТОЧНЫХ ВОД

 

6.221. Обеззараживание бытовых сточных вод и их смеси с производственными следует производить после их очистки.

При совместной биологической очистке бытовых и производственных сточных вод, но раздельной их механической очистке допускается при обосновании предусматривать обеззараживание только бытовых вод после их механической очистки с дехлорированием их перед подачей на сооружения биологичес­кой очистки.

6.222. Обеззараживание сточных вод следует про­изводить хлором, гидрохлоритом натрия, получае­мым на месте в электролизерах, или прямым элект­ролизом сточных вод.

6.223. Расчетную дозу активного хлора следует принимать, г/м3:

после механической очистки 10;

после механохимической очистки при эффектив­ности отстаивания свыше 70 % и неполной биологи­ческой очистки — 5;

после полной биологической, физико-химической и глубокой очистки 3 .

 

Примечания: 1. Дозу активного хлора надлежит уточнять в процессе эксплуатации, при этом количество ос­таточного хлора в обеззараженной воде после контакта должно быть не менее 1,5 г/м3.

2. Хлорное хозяйство очистных сооружений должно обеспечивать возможность увеличения расчетной дозы хло­ра в 1,5 раза без изменения вместимости складов для ре­агентов.

 

6.224. Хлорное хозяйство и электролизные уста­новки на очистных сооружениях следует проектиро­вать согласно СНиП 2.04.02-84.

6.225. Установки прямого электропиза при обос­новании допускается использовать после биологи­ческой или физико-химической очистки сточных вод.

6.226. Электрооборудование и шкаф управления следует располагать в отапливаемом помещении, ко­торое допускается блокировать с другими помеще­ниями очистных сооружений.

6.227. Для смешения сточной воды с хлором сле­дует применять смесители любого типа.

6.228. Продолжительность контакта хлора или гипохлорита со сточной водой в резервуаре или в от­водящих лотках и трубопроводах надлежит прини­мать 30 мин.

6.229. Контактные резервуары необходимо про­ектировать как первичные отстойники без скреб­ков; число резервуаров — не менее двух. Допуска­ется предусматривать барботаж воды сжатым возду­хом при интенсивности 0,5 м3/(м2×ч).

6.230. При обеззараживании сточных вод после биологических прудов следует выделять отсек для контакта сточной воды с хлором.

6.231. Количество осадка, выпадающего в кон­тактных резервуарах, следует принимать, л на 1 м3 сточной воды, при влажности 98 %:

после механической очистки — 1,5;

после биологической очистки в аэротенках и на биофильтрах — 0,5.

 

СООРУЖЕНИЯ ДЛЯ ГЛУБОКОЙ ОЧИСТКИ

СТОЧНЫХ ВОД

 

Общие указания

 

6.232. Сооружения предназначены для обеспече­ния более глубокой очистки городских и производ­ственных сточных вод и их смеси, прошедших био­логическую очистку, а также для производственных сточных вод после механической, химической или физико-химической очистки перед сбросом в вод­ные объекты или повторным использованием их в производстве или сельском хозяйстве.

6.233. В качестве сооружений для глубокой очистки сточных вод могут быть применены филь­тры с зернистой загрузкой различных конструкций, сетчатые барабанные фильтры, биологические пруды, сооружения для насыщения сточных вод кисло­родом.

Выбор типа сооружений надлежит производить с учетом качества исходных сточных вод. требований к степени их очистки, наличия фильтрующих мате­риалов и т. п.

6.234. Проектирование биологических прудов надлежит производить согласно пп. 6.198—6.215.

 

Фильтры с зернистой загрузкой

 

6.235. Фильтры с зернистой загрузкой рекомен­дуются следующих конструкций: однослойные, двухслойные и каркасно-засыпные (КЗФ).

В зависимости от конструкции и климатических условий фильтры следует располагать на открытом воздухе или в помещении. При расположении фильт­ров на открытом воздухе трубопроводы, запорная арматура, насосы и прочие коммуникации должны располагаться в проходных галереях.

6.236. В качестве фильтрующего материала до­пускается использовать кварцевый песок, гравий, гранитный щебень, гранулированный доменный шлак, антрацит, керамзит, полимеры, а также дру­гие зернистые загрузки, обладающие необходимыми технологическими свойствами, химической стой­костью и механической прочностью.

6.237. Расчет конструктивных элементов фильтров надлежит производить согласно СНиП 2.04.02-84 и настоящим нормам.

6.238. Расчетные параметры фильтров с зернистой загрузкой для глубокой очистки городских и близ­ких к ним по составу производственных сточных вод после биологической очистки следует прини­мать по табл. 52.

Расчет площади фильтров надлежит производить по максимальному часовому притоку за вычетом допустимой неравномерности, равной 15 %.

6.239. При проектировании фильтров с зернистой загрузкой следует предусматривать:

при подаче сточных вод после биологической очистки — установку перед фильтрами (кроме КЗФ) барабанных сеток;

водовоздушную промывку для однослойных, во­дяную — для двухслойных, водовоздушную или водяную — для каркасно-засыпных фильтров; при этом промывку следует осуществлять нехлори­рованной фильтрованной водой;

 


Таблица 52

 

 

Параметры фильтрующей загрузки

 

 

 

 

Скорость фильтрования,

 

 

Интенсивность

 

Продолжи-тельность

 

Эффект очистки, %

Фильтр

 

фильтрующий

гранулометрическая характеристика

загрузки d, мм

Высота

слоя, м

м/ч, при режиме

промывки,  л/(с×м2)

этапа промывки,

по

БПКполн

по

взвешенным

 

материал

минимальная

максимальная

экви­валентная

 

нормальном

форсированном

 

мин

 

вещест­вам

 

Однослойный мелко­зернистый с подачей воды сверху вниз

 

 

Кварцевый песок

 

Поддерживающие слои — гра­вий

 

1,2

 

2

5

10

20

 

 

2

 

5

10

20

40

 

1,5 1,7

 

 

1,2 1,3

 

0,15 0,2

0,1 0,15

0,1 0,15

0,2 0,25

 

6 7

 

7 8

 

Воздух (1820)

 

Воздух (1820) и вода (35)

Вода (7)

 

2

 

10 12

 

6 8

 

50 60

 

70 75

 

Однослойный крупнозернистый с подачей воды сверху вниз

 

 

Гранитный щебень

 

3

 

10

 

5,5

 

1,2

 

16

 

18

 

Воздух (16)

Воздух (16)

и вода (10)

Вода (15)

 

3

4

 

3

 

35 40

 

45 50

 

Двухслой­ный с подачей воды сверху вниз

 

Антрацит или керам­зит

 

Кварцевый песок

 

Поддерживающие слои — гра­вий

 

 

1,2

 

 

0,7

 

2

5

10

20

 

 

2

 

 

1,6

 

5

10

20

40

 

 

 

 

 

0,4 0,5

 

 

0,6 0,7

 

0,15 0,25

0,1 0,15

0,1 0,15

0,2 0,25

 

7 8

 

9 10

 

Вода (14—16)

 

10 12

 

60 70

 

70 80

 

Каркасно-засыпной (КЗФ)

 

 

Кварцевый песок

 

Каркас

гравий

 

 

0,8

 

1

40

 

 

1

 

40

60

 

 

 

0,9

 

1,8

0,5

 

10

 

15

 

Воздух (1416)

и вода (68)

Вода (1416)

 

5 7

 

3

 

70

 

70 80


 

вместимость резервуаров промывной воды и грязных вод от промывки фильтров — не менее чем на две промывки;

при необходимости — насыщение фильтрованной воды кислородом согласно пп. 6.216—6.220;

трубчатые распределительные дренажные систе­мы большого сопротивления;

для фильтров с подачей воды сверху вниз — уст­ройство гидравлического или механического взрых­ления верхнего слоя загрузки.

6.240. Для предотвращения биологического об­растания фильтров с зернистой загрузкой необхо­димо предусматривать предварительное хлориро­вание поступающих сточных вод дозой до 2 мг/л и периодическую обработку фильтра (2—3 раза в год) хлорной водой с содержанием хлора до 150 мг/л при периоде контакта 24 ч.

6.241. Проектирование фильтров с зернистой за­грузкой для глубокой очистки производственных сточных вод следует производить по данным техно­логических исследований.

 

Фильтры с полимерной загрузкой

 

6.242. Фильтры Полимер" следует применять для очистки производственных сточных вод от ма­сел и нефтепродуктов, не находящихся а них в виде стойких эмульсий.

Фильтры допускается применять для очистки дождевых вод.

6.243. Допустимая концентрация масел и нефте­продуктов в исходной воде до 150 мг/л, взвешен­ных веществ до 100 мг/л. Концентрация этих ве­ществ в очищенной воде — до 10 мг/л.

6.244. В качестве загрузки надлежит принимать пенополиуретан крупностью 20х20х20 мм, плот­ностью 46—50 кг/м3, высотой слоя 2 м. Скорость фильтрования до 25 м/ч.

6.245. Фильтры следует размещать в здании с тем­пературой воздуха не ниже 5 °С.

 

Сетчатые барабанные фильтры

 

6.246. Сетчатые барабанные фильтры следует при­менять для механической очистки производствен­ных сточных вод, для установки перед фильтрами глубокой очистки сточных вод (барабанные сетки), а также в качестве самостоятельных сооружений глубокой очистки (микрофильтры). Степень очист­ки сточных вод, достигаемую на сетчатых барабан­ных фильтрах, допускается принимать по табл. 53.

 

Таблица 53

 

 

Сетчатые барабанные

Снижение содержания загрязняющих

веществ, %

фильтры

по взвешенным веществам

по БПКполн

 

Микрофильтры Барабанные сетки

 

 

5060

2025

 

2530

510

 

6.247. При применении барабанных сеток для ме­ханической очистки сточных вод в исходной воде должны отсутствовать вещества, затрудняющие промывку сетки (смолы, жиры, масла, нефтепродукты и пр.), а содержание взвешенных веществ не должно превышать 250 мг/л.

При использовании микрофильтров для глубо­кой очистки городских сточных вод содержание взвешенных веществ в исходной воде должно быть не более 40 мг/л.

6.248. Число резервных сетчатых барабанных фильтров надлежит принимать по табл. 54.

 

Таблица 54

 

Барабанные

Число

фильтры

рабочих

резервных

 

Микрофильтры

 

До 4

 

1

 

Св. 4

2

Барабанные сетки

До 6

1

 

Св. 6

 

2

 

6.249. При применении сетчатых барабанных фильтров надлежит:

производительность и конструкцию принимать по паспортным данным заводов-изготовителей или по рекомендациям научно-исследовательских организа­ций;

предусматривать промывку водой, прошедшей сетчатые барабанные фильтры при давлении 0,15 МПа (1,5 кгс/см2):

постоянную с расходом для микрофильтров 3—4 % расчетной производительности установки, ба­рабанных сеток для механической очистки сточных вод — 1—1,5 %;

периодическую для барабанных сеток в схеме глубокой очистки сточных вод с числом промывок 8—12 раз в сутки, продолжительностью промывки 5 мин, расходом промывной воды 0,3—0,5 % расчет­ной производительности барабанной сетки.

 

СООРУЖЕНИЯ ДЛЯ ФИЗИКО-ХИМИЧЕСКОЙ ОЧИСТКИ

СТОЧНЫХ ВОД

 

Нейтрализация сточных вод

 

6.250. Сточные воды, величина рН которых ниже 6,5 или выше 8,5, перед отводом а канализацию на­селенного пункта или в водный объект подлежат нейтрализации.

Нейтрализацию следует осуществлять смешением кислых и щелочных сточных вод, введением реагентов или фильтрованием их через нейтрализующие материалы.

6.251. Дозу реагентов надлежит определять из ус­ловия полной нейтрализации содержащихся в сточ­ных водах кислот или щелочей и выделения в оса­док соединений тяжелых металлов по уравнению соответствующей реакции. Избыток реагента должен составлять 10 % расчетного количества.

При определении дозы реагента необходимо учи­тывать взаимную нейтрализацию кислот и щелочей, а также щелочной резерв бытовых сточных вод или водоема (водотока).

6.252. В качестве реагентов для нейтрализации кислых сточных вод следует применять гидроокись кальция (гашеную известь) в виде 5 % по активной окиси кальция известкового молока или отходы щелочей (едкого натра или калия).

Проектирование установок для приготовления известкового молока надлежит выполнять согласно СНиП 2.04.02-84.

6.253. Для подкисления и нейтрализации щелоч­ных сточных вод рекомендуется применять техни­ческую серную кислоту.

6.254. Для выделения осадка следует предусмат­ривать отстойники с временем пребывания в них сточных вод в течение 2 ч.

6.255. Количество сухого вещества осадка М, кг/м3, образующегося при нейтрализации 1 м3 сточ­ной воды, содержащей свободную серную кислоту и сопи тяжелых металлов, надлежит определять по формуле

 

              (80)

 

где А — содержание активной СаО в используемой извести, %;

А1 — количество активной СаО, необходимой для осаждения металлов, кг/м3;

А2 — количество активной СаО, необходимой для нейтрализации свободной серной ки­слоты, кг/м3;

А3 — количество образующихся гидроксидов металлов, кг/м3;

Е1 — количество сульфата кальция, образующе­гося при осаждении металлов, кг/м3;

Е2 — количество сульфата кальция, образующе­гося при нейтрализации свободной кисло­ты, кг/м3.

 

Примечание. Третий член в формуле не учитывает­ся, если его значение отрицательное.

 

6.256. Объем осадка, образующегося при нейтра­лизации 1 м3 сточной воды, Wmud, %, определяется по формуле

 

                                       (81)

 

где Pmud влажность осадка, %.

Влажность осадка должна быть менее или рав­на разности 100 за вычетом количества сухого ве­щества. выраженного в процентах.

6.257. Осадок, выделенный в отстойниках, надле­жит обезвоживать на шламовых площадках, ваку­ум-фильтрах или фильтр-прессах. При проектирова­нии отстойников и сооружений по обезвоживанию следует руководствоваться требованиями соответ­ствующих разделов настоящих норм.

6.258. Все резервуары, трубопроводы, оборудова­ние, соприкасающиеся с агрессивными средами, должны быть защищены соответствующей изоля­цией.

 

Реагентные установки

 

6.259. Реагентную обработку необходимо приме­нять для интенсификации процессов удаления из сточных вод грубодисперсных, коллоидных и раст­воренных примесей в процессе физико-химической очистки, а также для обезвреживания хром- и циансодержащих сточных вод.

В случае содержания биогенных элементов в сточ­ных водах, подлежащих биологической очистке, ни­же норм, указанных в п. 6.2, следует предусматри­вать их искусственное пополнение (биогенную подпитку).

6.260. В качестве реагентов следует применять коагулянты (соли алюминия или железа), известь, флокулянты (водорастворимые органические полимеры неионогенного, анионного и катионного ти­пов).

6.261. Вид реагента и его дозу надлежит прини­мать по данным научно-исследовательских органи­заций а зависимости от характера загрязнений сточ­ных вод, необходимой степени их удаления, мест­ных условий и т. п. Для сточных вод некоторых отраслей промышленности и городских сточных вод дозы реагентов допускается принимать по табл. 55.

 


Таблица 55

 

 

Сточные воды

 

Загрязняю­щие вещества

 

Концентрация

 

Реагенты

Доза реагента, мг/л

 

 

 

загряз­няющих

ве­ществ, мг/л

 

 

извести

солей алюминия

 

солей железа

анионного флокулянта по активному полимеру

катионного флокулянта по активному полимеру

 

Нефтеперерабытывающих заводов, нефтеперевалочных баз

 

 

Нефтепродукты

 

До 100

100 200

200 300

 

 

Соли алюминия сов­местно с анионным флокулянтом или без него, катионные флокулянты

 

 

50 75

75 100

100 150

 

 

0,5

1,0

1,5

 

2,5 5

5 10

10 15

 

Машиностроитель­ных, коксохими­ческих заводов

 

 

Масла

 

До 600

 

Соли алюминия или железа совместно с анионным флокулянтом или без него, катионные флокулянты

 

 

 

50 300

 

50 300

 

0,5 2

 

5 20

 

Пищевой промышленности, шерстомойных фабрик, заводов металлообрабатывающих, синтетических волокон

 

 

Эмульсии масел и жи­ров

 

100

300

500

1000

 

Соли алюминия или железа совместно с анионным флокулянтом или без него

 

 

150

300

500

700

 

150

300

500

700

 

0,5 3

0,5 3

0,5 3

 

 

Целлюлозно-бумажной промышленности

 

 

Цветность (сульфатный лигнин), град ПКШ

 

950

1450

2250

 

 

То же

 

 

250

275

400 500

 

250

275

400 500

 

 

 

 

Цветность (лигносульфат), град ПКШ

 

 

1000

2000

 

Известь СаО

 

1000

2500

 

 

 

 

 

Шламовые воды углеобогатитель­ных фабрик, шахт­ные воды

 

 

Суспензия угольных частиц

 

До 100

100 500

500 1000

1000 2000

 

 

Анионный флокулянт

 

 

 

 

2 5

5 10

10 15

15 — 25

 

 

Бумажных и кар­тонных фабрик

 

Суспензия целлюлозы

 

До 1000

 

Соли алюминия сов­местно с анионным флокулянтом

Катионный флокулянт

 

 

 

 

50 300

 

 

 

 

0,5 2

 

 

 

2,5 20

 

Городские и бы­товые

 

 

БПКполн

 

До 300

 

Соли алюминия совместно с анионным флокулянтом или без него

 

 

 

30 40*

40 50*

 

 

0,5 1,0

 

 

 

Взвешенные вещества

 

До 350

 

Соли железа сов­местно с анионным флокулянтом или без него

Катионный флокулянт

 

 

 

 

40 50**

100 150***

50 70***

 

0,5 1,0

0,5 1,0

 

10 20

 

Примечание. Дозы реагентов приведены по товарному продукту, флокулянтов — по активному полимеру, за исключе­нием: * по Al2O3, ** по FeSO4, *** по FeCl3.


 

6.262. При обработке воды коагулянтами необ­ходимо поддерживать оптимальное значение рН подкислением или подщелачиванием ее.

Для городских вод при рН до 7,5 следует приме­нять соли алюминия, при рН свыше 7,5 — соли же­леза.

6.263. Приготовление, дозирование и ввод реа­гентов в сточную воду надлежит предусматривать согласно СНиП 2.04.02-84.

6.264. Смешение реагентов со сточной водой сле­дует предусматривать в гидравлических смесителях или в подводящих воду трубопроводах согласно СНиП 2.04.02-84.

Допускается применять смешение в механичес­ких смесителях или в насосах, подающих сточную воду на очистные сооружения.

В случае использования в качестве реагентов же­лезного купороса следует использовать аэрируемые смесители, аэрируемые песколовки или преаэраторы, обеспечивающие перевод закиси железа в гидрат окиси. Время пребывания в смесителе в этом случае должно быть не менее 7 мин, интен­сивность подачи воздуха 0,7—0,8 м33 обрабатываемой сточной воды в 1 мин, глубина смесителя 22,5 м.

6.265. В камерах хлопьеобразования надлежит применять механическое или гидравлическое пере­мешивание.

Рекомендуется использовать камеры хлопьеобразования, состоящие из отдельных отсеков с посте­пенно уменьшающейся интенсивностью перемешивания.

6.266. Время пребывания в камерах хлопьеобразования следует принимать, мин: при отделении скоагулированных взвешенных веществ отстаива­нием дли коагулянтов 10—15, для флокулянтов — 20—30, при очистке сточной воды флотацией для коагулянтов — 3—5, для флокулянтов — 10—20.

6.267. Интенсивность смешения сточных вод с реагентами в смесителях и камерах хлопьеобразования следует оценивать по величине среднего гра­диента скорости, которая составляет, с1:

для смесителей с коагулянтами — 200, с флокулянтами — 300—500;

для камер хлопьеобразования: при отстаивании для коагулянтов и флокулянтов — 25—50; при флотации — 50—75.

6.268. Отделение скоагулированных примесей от воды следует осуществлять отстаиванием, флота­цией, центрифугированием или фильтрованием, проектируемыми согласно настоящим нормам.

 

Обезвреживание циансодержащих сточных вод

 

6.269. Для обезвреживания сильнотоксических цианидов (простых цианидов, синильной кислоты, комплексных цианидов цинка, меди, никеля, кад­мия) следует применять окисление их реагентами, содержащими активный хлор при величине рН 11-11,5.

6.270. К реагентам, содержащим активный хлор, относятся хлорная известь, гипохлориты кальция и натрия, жидкий хлор.

6.271. Дозу активного хлора надлежит принимать из расчета 2,73 мг на 1 мг цианидов цинка, никеля. кадмия, синильной кислоты и простых цианидов и 3,18 мг/мг — для комплексных цианидов меди с избытком не менее 5 мг/л.

6.272. Концентрация рабочих растворов реаген­тов должна быть 5—10 % по активному хлору.

6.273. Для обработки циансодержащих сточных вод следует, как правило, предусматривать уста­новки периодического действия, состоящие не ме­нее чем из двух камер реакции.

Время контакта сточных вод с реагентами 5 мин — при окислении простых цианидов и 15 мин при окислении комплексных цианидов.

6.274. После обработки сточных вод активным хлором их необходимо нейтрализовать до рН 8—8,5.

6.275. Объем осадка влажностью 98 % при двух­часовом отстаивании составляет 5 % объема обра­батываемой воды.

При введении перед отстойниками полиакриламида (доза 20 мг/л 0,1 %-ного раствора) время отстаивания надлежит сокращать до 20 мин.

 

Обезвреживание хромсодержащих сточных вод

 

6.276. Для обезвреживания хромсодержащих сточных вод следует применять бисульфит или суль­фат натрия при рН 2,5—3.

6.277. Дозу бисульфита натрия надлежит прини­мать равной 7,5 мг на 1 мг шестивалентного хрома при концентрации его до 100 мг/л и 5,5 мг/мг при концентрации хрома свыше 100 мг/л.

6.278. Перед подачей обезвреженных сточных вод на отстойники их надлежит нейтрализовать извест­ковым молоком до рН 8,5—9.

 

Биогенная подпитка

 

6.279. Для биогенной подпитки в качестве био­генных добавок следует принимать:

фосфорсодержащие реагенты — суперфосфат, ортофосфорную кислоту;

азотсодержащие реагенты — сульфат аммония. аммиачную селитру, водный аммиак, карбамид;

азот- и фосфорсодержащие реагенты диаммонийфосфат технический, аммофос.

6.280. Концентрацию рабочих растворов надле­жит принимать до 5 % по P2O5 и до 15% по N.

 

СООРУЖЕНИЯ ДЛЯ АДСОРБЦИОННОЙ ОЧИСТКИ

СТОЧНЫХ ВОД

 

Общие указания

 

6.281. Для глубокой очистки сточных вод от растворенных органических загрязняющих веществ методом адсорбции в качестве сорбента надлежит применять активные угли.

6.282. Активный уголь следует применять в виде слоя загрузки плотного (движущегося или непод­вижного), намытого на подложку из другого мате­риала или суспензии в сточной воде.

 

Адсорберы с плотным слоем

загрузки активного угля

 

6.283. В качестве адсорберов надлежит применять конструкции безнапорных открытых и напор­ных фильтров с загрузкой в виде плотного слоя гранулированного угля крупностью 0,8—5 мм.

6.284. Содержание взвешенных веществ в сточ­ных водах, поступающих на адсорберы, не должно превышать 5 мг/л.

6.285. Площадь загрузки адсорбционной установ­ки Fads, м2, надлежит определять по формуле

 

                                          (82)

 

где qw — среднечасовой расход сточных вод, м3/ч;

v — скорость потока, принимаемая не более 12 м/ч.

При выключении одного адсорбера скорость фильтрования на остальных не должна увеличи­ваться более чем на 20 %.

6.286. Число последовательно работающих адсор­беров Nads надлежит рассчитывать по формуле

 

                                                   (83)

 

где Hads — высота сорбционной загрузки одного фильтра, м, принимаемая конструк­тивно;

Htot общая высота сорбционного слоя, м, оп­ределяемая по формуле

 

                                               (84)

 

здесь H1 — высота сорбционного слоя, м, в кото­ром за период tads адсорбционная ем­кость сорбента исчерпывается до степе­ни К, рассчитываемая по формуле

 

                                          (85)

 

где gsb — насыпной вес активного угля, г/м3, принимаемый по справочным данным;

  минимальная доза активного угля, г/л, выгружаемого из адсорбера при коэф­фициенте исчерпания емкости Ksb, определяемая по формуле

 

                                           (86)

 

здесь Cen, Cex — концентрации сорбируемого вещества до и после очистки, мг/л;

Ksb — принимается равным 0,6—0,8;

  максимальная сорбционная емкость активного угля, мг/л, определяемая экспериментально;

H2 высота загрузки сорбционного слоя, обеспечивающая работу установки до концентрации Cex в течение времени tads, принимаемого по условиям экс­плуатации, и определяемая по фор­муле

 

                                        (87)

 

где   максимальная доза активного угля, г/л, определяемая по формуле

 

                                          (88)

 

здесь  — минимальная сорбционная емкость ак­тивного угля, мг/л, определяемая экс­периментально;

H3 резервный спой сорбента, рассчитан­ный на продолжительность работы установки в течение времени перегруз­ки или регенерации слоя сорбента вы­сотой Н1, м.

6.287. Потери напора в слое гранулированного уг­ля при крупности частиц загрузки 0,8—5 мм надле­жит принимать не более 0,5 м на 1 м слоя загрузки.

6.288. Выгрузку активного угля из адсорбера следует предусматривать насосом, гидроэлеватором, эрлифтом и шнеком при относительном расшире­нии загрузки на 20—25 %, создаваемом восходя­щим потоком воды со скоростью 40—45 м/ч.

В напорных адсорберах допускается предусматривать выгрузку угля под давлением не менее 0,3 МПа (3 кгс/см2).

6.289. Металлические конструкции, трубопрово­ды. арматура и емкости, соприкасающиеся с влаж­ным углем, должны быть защищены от коррозии.

 

Адсорберы с псевдоожиженным слоем

активного угля

 

6.290. Сточные воды, поступающие в адсорберы с псевдоожиженным слоем, не должны содержать взвешенных веществ свыше 1 г/л при гидравличес­кой крупности не более 0,3 мм/с. Взвешенные ве­щества, выносимые из адсорберов, и мелкие части­цы угля надлежит удалять после адсорбционных аппаратов.

6.291. Адсорбенты с насыпным весом свыше 0,7 т/м3 допускается дозировать в мокром или су­хом виде, а менее 0,7 т/м3 — только в мокром виде.

6.292. По высоте адсорберов 0,51,0 м следует устанавливать секционирующие решетки с круглой перфорацией диаметром 10—20 мм и долей живого сечения 10—15 %. Оптимальное число секций — три-четыре.

6.293. Скорость восходящего потока воды в ад­сорбере надлежит принимать 30—40 м/ч размерами частиц 1—2,5 мм для активных углей и 10—20 м/ч для углей размерами частиц 0,25—1 мм.

6.294. Дозу активного угля для очистки воды следует определять экспериментально.

 

СООРУЖЕНИЯ ДЛЯ ИОНООБМЕННОЙ ОЧИСТКИ

СТОЧНЫХ ВОД

 

6.295. Ионообменные установки следует приме­нять для глубокой очистки сточных вод от мине­ральных и органических ионизированных соедине­ний и их обессоливания с целью повторного использования очищенной воды в производстве и утили­зации ценных компонентов.

6.296. Сточные воды, подаваемые на установку, не должны содержать: солей — свыше 3000 мг/л; взвешенных веществ — свыше 8 мг/л; ХПК не должна превышать 8 мг/л.

При большем содержании в сточной воде взве­шенных веществ и большей ХПК необходимо пре­дусматривать ее предварительную очистку.

6.297. Объем катионита Wkat, м3, в водород-катионитовых фильтрах следует определять по формуле

 

                                    (89)

 

где qw — расход обрабатываемой воды, м3/ч;

 — суммарная концентрация катионов в обрабатываемой воде, г×экв/м3;

  допустимая суммарная концентрация катионов в очищенной воде, г×экв/м3;

nreg — число регенераций каждого фильтра в сутки (выбирается в зависимости от конкретных условий но не более двух);

   рабочая обменная емкость катионита по наименее сорбируемому катиону, г×экв/м3:

 

                             (90)

 

здесь ak — коэффициент эффективности регенера­ции, учитывающий неполноту регенерации и принимаемый равным 0,8—0,9;

 — полная обменная емкость катионита, г×экв/м3, определяемая по заводским паспортным данным, по каталогу на иониты или по экспериментальным дан­ным;

qk удельный расход воды на отмывку катионита после регенерации, м3 на 1 м3 катионита, принимаемый равным 34;

Kion коэффициент, учитывающий тип ионита; для катионита принимается равным 0,5;

  суммарная концентрация катионов в отмывочной воде (при отмывке катио­нита ионированной водой).

6.298. Площадь катионитовых фильтров Fk, м2, надлежит определять по формулам:

 

                                                         (91)

 

                                                            (92)

 

где Hk высота слоя катионита в фильтре, при­нимаемая по каталогу ионообменных фильтров от 2 до 3 м;

qw расход воды, м3/ч;

vf  — скорость фильтрования, м/ч, принимае­мая по п. 6.299.

При значительных отклонениях площадей, рассчи­танных по формулам (91) и (92) , следует в формуле (89) проводить корректировку числа регенера­ций nreg.

6.299. Скорость фильтрования воды vf, м/ч, для напорных фильтров первой ступени не должна пре­вышать при общем солесодержании воды:

до 5  мг×экв/л  — 20;

515             15;

1520            10;

свыше 20        8.

6.300. Число катионитовых фильтров первой сту­пени следует принимать: рабочих — не менее двух, резервных — один.

6.301. Потери напора а напорных катионитовых фильтрах надлежит принимать по табл. 56.

 

Таблица 56

 

 

Скорость

Потери напора в фильтре, м, при

размере зерен ионита, мм

фильтрования vf, м/ч

0,3 0,8

0,5 1,2

 

при высоте слоя загрузки, м

 

2

2,5

4

2,5

 

5

 

5

 

5,5

 

4

 

4,5

10

5,5

6

5

5,5

15

6

6,5

5,5

6

20

6,5

7

6

6,5

25

 

9

10

7

7,5

 

6.302. Интенсивность подачи воды при взрыхле­нии катионита следует принимать 3—4 л/(с×м2) про­должительность взрыхления — 0,25 ч. Для взрыхле­ния катионита перед регенерацией следует использо­вать последние фракции воды от отмывки катио­нита.

6.303. Регенерацию катионитовых фильтров пер­вой ступени надлежит производить 7—10 %-ными растворами кислот (соляной, серной). Скорость пропуска регенерационного раствора кислоты через слой катионита не должна превышать 2 м/ч. После­дующая отмывка катионита осуществляется иони­рованной водой, пропускаемой через слой катиони­та сверху вниз со скоростью 6—8 м/ч. Удельный рас ход составляет 2,5—3 м на 1 м3 загрузки фильтра.

Первая половина объема отмывочной воды сбра­сывается в бак для приготовления регенерирующего раствора кислоты, вторая половина — в бак воды для взрыхления катионита.

6.304. Водород-катионитовые фильтры второй ступени следует рассчитывать согласно пп. 6.297— 6.301 и исходя из концентрации катионов щелоч­ных металлов и аммония.

6.305. Регенерацию катионитовых фильтров вто­рой ступени следует производить 710 %-ным раст­вором серной кислоты. Удельный расход кислоты составляет 2,5 мг×экв на 1 мг×экв рабочей обменной емкости катионита.

6.306. Объем анионита Wan, м3, в анионитовых фильтрах надлежит определять по формуле

 

                                   (93)

 

где  qw расход обрабатываемой воды, м3/ч;

 — суммарная концентрация анионов в об­рабатываемой воде, мг×экв/л;

 — допустимая суммарная концентрация анионов в очищенной воде, мг×экв/л;

nreg число регенераций каждого фильтра в сутки (не более двух);

  рабочая обменная емкость анионита, мг×экв/л:

 

                                        (94)

 

где aan — коэффициент эффективности регенера­ции анионита, принимаемый для слабоосновных анионитов равным 0,9;

  полная обменная емкость анионита. мг×экв/л, определяемая на основании паспортных данных, по каталогу на иониты или экспериментальным дан­ным;

qan — удельный расход воды на отмывку анионита после регенерации смолы. принимаемый равным 3—4 м3 на 1 м3 смолы;

Kion коэффициент, учитывающий тип ионита; для анионита принимается равным 0,8;

 — суммарная концентрация анионов в отмывочной воде, мг×экв/м3.

6.307. Площадь фильтрации Fan, м2, анионитовых фильтров первой ступени надлежит определять по формуле

 

                                               (95)

 

где qw расход обрабатываемой воды, м3;

nreg число регенераций анионитовых фильт­ров в сутки, принимаемое не более двух;

tf — продолжительность работы каждого фильтра, ч, между регенерациями, опре­деляемая по формуле

 

                                                   (96)

 

здесь t1 — продолжительность взрыхления аниони­та, принимаемая равной 0,25 ч;

t2 — продолжительность пропускания регенерирующего раствора, определяемая ис­ходя из количества регенерирующего раствора и скорости его пропускания (1,52 м/ч);

t3 — продолжительность отмывки анионита после регенерации, определяемая исхо­дя из количества промывочной воды и скорости отмывки (5—6 м/ч);

vf — скорость фильтрования воды, м/ч, при­нимаемая в пределах 820 м/ч.

6.308. Регенерацию анионитовых фильтров пер­вой ступени надлежит производить 4—6 %-ными растворами едкого натра, кальцинированной соды или аммиака; удельный расход реагента на регене­рацию равен 2,5—3 мг×экв на 1 мг×экв сорбированных анионов (на 1 мг×экв рабочей обменной ем­кости анионита).

В установках с двухступенчатым анионированием для регенерации анионитовых фильтров первой ступени следует использовать отработанные раство­ры едкого натра от регенерации анионитовых фильт­ров второй ступени.

6.309. Загрузку анионитовых фильтров второй ступени следует производить сильноосновным анионитом, высота загрузки 1,5—2 м. Расчет анионито­вых фильтров второй ступени следует производить согласно пп. 6.306 и 6.307.

Скорость фильтрования обрабатываемой воды следует принимать 12—20 м/ч.

6.310. Регенерацию анионитовых фильтров вто­рой ступени надлежит производить  6—8 %-ным раствором едкого натра. Скорость пропускания ре­генерирующего раствора должна составлять 1—1,5 м/ч. Удельный расход едкого натра на регенера­цию 7—8 г×экв на 1 г×экв сорбироваиных ионов (на 1 г×экв рабочей обменной емкости анионита).

6.311. Фильтры смешанного действия (ФСД) следует предусматривать после одно- или двухсту­пенчатого ионирования воды для глубокой очистки воды и регулирования величины рН ионированной воды.

6.312. Расчет ФСД производится в соответствии с пп. 6.2976.301, 6.306 и 6.307. Скорость фильтро­вания — до 50 м/ч.

6.313. Регенерацию катионита следует произво­дить 7—10 %-ным раствором серной кислоты, анио­нита — 6—8 %-ным раствором едкого натра. Ско­рость про пускания регенерирующих растворов должна составлять 1—1,5 м/ч. Отмывку ионитов в фильтрах необходимо производить обессоленной водой. В процессе отмывки иониты следует пере­мешивать сжатым воздухом.

6.314. Аппараты, трубопроводы и арматура установок ионообменной очистки и обессоливания сточных вод должны изготавливаться в антикорро­зионном исполнении.

6.315. Регенерацию ионитов следует производить с фракционным отбором элюатов. Элюат следует делить на 2—3 фракции.

Наиболее концентрированные по извлекаемым компонентам фракции элюата следует направлять на обезвреживание, переработку, утилизацию, наи­менее концентрированные по извлекаемым компонентам фракции — направлять на повторное исполь­зование в последующих циклах регенерации.

 

СООРУЖЕНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ

ОЧИСТКИ СТОЧНЫХ ВОД

 

6.316. Аппараты для электрохимической очистки сточных вод могут быть как с не подвергающимися (электролизеры), так и с подвергающимися элек­тролитическому растворению анодами (электроко­агуляторы).

 

Электролизеры для обработки

циансодержащих сточных вод

 

6.317. Для обработки циансодержащих сточных вод надлежит применять электролизеры с анода­ми, не подвергающимися электролитическому растворению (графит, титан с металлооксидным покры­тием и др.), и стальными катодами.

6.318. Электролизеры следует применять при расходе сточных вод до 10 м3/ч и исходной кон­центрации цианидов не менее 100 мг/л.

6.319. Корпус электролизера должен быть защищен изнутри материалами, стойкими к воздейст­вию хлора и его кислородных соединений, оборудован вентиляционным устройством для удаления выделяющегося газообразного водорода.

6.320. Величину рабочего тока Icur, А, при работе электролизеров непрерывного и периодического действия надлежит определять по формуле

 

  или                           (97)

 

где Ccn исходная концентрация цианидов в сточ­ных водах, г/м3;

Wel объем сточных вод в электролизере, м3;

hcur выход по току, принимаемый равным 0,60,8:

tel время пребывания сточных вод в элект­ролизере, ч;

2,06 — коэффициент удельного расхода электри­чества, А×ч/г;

qw — расход сточных вод, м3/ч.

6.321. Общую поверхность анодов fan, м2, сле­дует определять по формуле

 

                                                         (98)

 

где ian анодная плотность тока, принимаемая равной 100150 А/м2.

Общее число анодов Nan следует определять по формуле

 

                                                         (99)

 

где f’an  поверхность одного анода, м2.

 

Электрокоагуляторы

с алюминиевыми электродами

 

6.322. Электрокоагуляторы с алюминиевыми пластинчатыми электродами следует применять для очистки   концентрированных  маслосодержащих сточных вод (отработанных смазочно-охлаждающих жидкостей), образующихся при обработке металлов резанием и давлением, с концентрацией масел не более 10 г/л.

При обработке сточных вод с более высоким содержанием масел необходимо предварительное разбавление предпочтительно кислыми сточными водами. Остаточная концентрация масел в очищен­ных сточных водах должна быть не более 25 мг/л.

6.323. При проектировании электрокоагуляторов необходимо определять: 

площадь электродов fek, м2, по формуле

 

                                                 (100)

 

где qw — производительность аппарата, м3/ч;

qcur удельный     расход     электричества, А×ч/м3, допускается принимать по табл. 57;

ian — электродная плотность тока, А/м2; ian = 80120 А/м2;

токовую нагрузку Icur, А, по формуле

 

                                   (101)

 

длину ребра электродного блока lb, м, по фор­муле

 

                                       (102)

 

где  d — толщина электродных пластин, мм; d = 48 мм;

b — величина межэлектродного пространства, мм; b = 1215 мм.

Удельный расход алюминия на очистку сточной воды qAl, г/м3, следует принимать по табл. 57.

6.324. После электрохимической обработки сточ­ные воды следует отстаивать не менее 60 мин.

6.325. Предварительное подкисление сточных вод следует производить соляной (предпочтительно) или серной кислотой до величины рН 4,55,5.

6.326. Пластинчатые электроды следует собирать в виде блока. Электрокоагулятор должен быть снаб­жен водораспределительным устройством, приспособлением для удаления пенного продукта, устройствами для выпуска очищенной воды и шлама, при­бором для контроля уровня воды, устройством для реверсирования тока.

 

Примечание. Электрокоагулятор снабжается устройством для реверсирования тока лишь в случае его от­сутствия в источнике постоянного тока.

 

6.327. В качестве электродного материала еле. дует применять алюминий или его сплавы, за исклю­чением сплавов, содержащих медь.

6.328. Расчет производительности вытяжной вен­тиляционной системы следует производить исходя из количества выделяющегося водорода, при этом производительность вентилятора qfan, м3/ч, надлежит определять по формуле

 

                                (103)

 

где qH — удельный объем выделяющегося водоро­да, л/м3, допускается принимать по табл. 57.

 

Таблица 57

 

Технологический параметр

Содержание масел, г/м3

 

 

2000

2500

3000

3500

4000

4500

5000

5500

6000

8000

10 000

 

qcur, А×ч/м3

 

 

180

 

225

 

270

 

315

 

360

 

405

 

430

 

495

 

540

 

720

 

860

qAl, г/м3

 

60

75

92

106

121

136

151

166

182

242

302

qH, л/м3

 

85

95

113

132

151

170

184

208

227

303

368

 

 

Электрокоагуляторы

со стальными электродами

 

6.329. Электрокоагуляторы со стальными электродами следует применять для очистки сточных вод предприятий различных отраслей промышленности от шестивалентного хрома и других металлов при расходе сточных вод не более 50 м3/ч, концентрации шестивалентного хрома до 100 мг/л, исходном об­щем содержании ионов цветных металлов (цинка, меди, никеля, кадмия, трехвалентного хрома) до 100 мг/л, при концентрации каждого из ионов ме­таллов до 30 мг/л, минимальном общем солесодержании сточной воды 300 мг/л, концентрации взве­шенных веществ до 50 мг/л.

6.330. Величина рН сточных вод должна состав­лять при наличии в сточных водах одновременно:

шестивалентного хрома, ионов меди и цинка:

4—6 при концентрации хрома 50—100 мг/л;

56                                        2050         ;

67                                       менее 20      ;

шестивалентного хрома, никеля и кадмия:

5—6 при концентрации хрома свыше 50 мг/л;

67                                        менее 50        ;

ионов меди, цинка и кадмия (при отсутствии шестивалентного хрома) — свыше 4,5;

ионов никеля (при отсутствии шестивалентного хрома) — свыше 7.

6.331. Корпус электрокоагулятора должен быть защищен изнутри кислотостойкой изоляцией и оборудован вентиляционным устройством.

6.332. При проектировании электрокоагуляторов надлежит принимать:

анодную плотность тока — 150—250 А/м2;

время пребывания сточных вод в электрокоагуляторе — до 3 мин;

расстояние между соседними электродами — 510 мм;

скорость движения сточных вод в межэлект­родном пространстве — не менее 0,03 м/с;

удельный расход электричества для удаления из сточных вод 1 г Cr6+,  Zn2+, Ni2+, Cd2+, Cu2+ при наличии в сточных водах только одного компонен­та соответственно 3,1; 22,5; 4,55; 66,5 и 33,5 А×ч;

удельный расход металлического железа для удаления из сточных вод 1 г шестивалентного хро­ма — 2—2,5 г; удельный расход металлического железа для удаления 1 г никеля, цинка, меди, кадмия — соответственно 5,5—6; 2,5—3; 3—3,5 и 44,5 г.

6.333. При наличии в сточных водах одного компонента величину тока Icur, А, надлежит опре­делять по формуле

 

                                             (104)

 

где qw — производительность аппарата, м3/ч;

Cen исходная концентрация удаляемого ком­понента в сточных водах, г/м3;

qcur удельный расход электричества, необходи­мый для удаления из сточных вод 1 г иона металла, А×ч/г.

При наличии в сточных водах нескольких ком­понентов и суммарной концентрации ионов тяжелых металлов менее 50% концентрации шестива­лентного хрома величину тока надлежит определять по формуле (104), причем в формулу подставлять значения Cen и qcur для шестивалентного хрома. При суммарной концентрации ионов тяжелых металлов свыше 50% концентрации шестивалентного хрома величину тока, определяемую по формуле (104), следует увеличивать в 1,2 раза, а величины Cen и qcur принимать для одного из компонентов, для которого произведение этих величин является наибольшим.

6.334. Общую поверхность анодов fpl, м2, над­лежит определять по формуле

 

                                         (105)

 

где ian — анодная плотность тока, А/м2.

При суммарной концентрации шестивалентного хрома и ионов тяжелых металлов в сточных водах до 80 мг/л, в интервалах 80—100, 100—150 и 150—200 мг/л анодную плотность тока следует принимать соответственно 150, 200, 250 и 300 А/м2.

6.335. Поверхность одного электрода f’pl, м2,  сле­дует определять по формуле

 

                                                   (106)

 

где bpl ширина электродной пластины, м;

hpl — рабочая высота электродной пластины (высота части электродной пластины, погруженной в жидкость), м.

6.336. Общее необходимое число электродных пластин Npl надлежит определять по формуле

 

                                                       (107)

 

Общее число электродных пластин в одном элек­тродном блоке должно быть не более 30. При боль­шем расчетном числе пластин необходимо преду­смотреть несколько электродных блоков.

6.337. Рабочий объем электрокоагулятора Wek, м3, следует определять по формуле

 

                                                     (108)

 

где   b расстояние между соседними электро­дами, м.

Расход металлического железа для обработки сточных вод QFe, кг/сут, при наличии в них только одного компонента надлежит определять по форму­ле

 

                                         (109)

 

где qFe удельный расход металлического желе­за, г, для удаления 1 г одного из компо­нентов сточных вод;

Kek коэффициент использования материала электродов, в зависимости от толщины электродных пластин принимаемый рав­ным 0,60,8;

Qw — расход сточных вод, м3/сут.

При одновременном присутствии в сточных во­дах нескольких компонентов и суммарной концен­трации ионов тяжелых металлов менее 50 % концен­трации шестивалентного хрома расход металлического железа для обработки сточных вод надлежит определять по формуле (109), в которую подстав­ляются значения qFe и Cen для шестивалентного хрома.

При одновременном присутствии в сточных во­дах нескольких компонентов и суммарной концент­рации ионов тяжелых металлов свыше 50 % кон­центрации шестивалентного хрома расход металлического железа надлежит определять по формуле (109) с коэффициентом 1,2, а qFe и Cen относить к одному из компонентов сточных вод, для кото­рого произведение этих величин является наиболь­шим.

 

СООРУЖЕНИЯ ДЛЯ ОБРАБОТКИ

ОСАДКА СТОЧНЫХ ВОД

 

Общие указания

 

6.338. Осадок, образующийся в процессе очистки сточных вод (сырой, избыточный активный ил и др.), должен подвергаться обработке, обеспечи­вающей возможность его утилизации или складирования. При этом необходимо учитывать народно­хозяйственную эффективность утилизации осадка и газа метана, организацию складирования неутилизируемых осадков и очистку сточных вод, образую­щихся при обработке осадка.

6339. Выбор методов стабилизации, обезвожива­ния и обезвреживания осадка должен определяться местными условиями (климатическими, гидро­геологическими, градостроительными, агротехничес­кими и пр.), его физико-химическими и теплофизическими характеристиками, способностью к водо­отдаче.

6.340. При обосновании по рекомендациям спе­циализированных научно-исследовательских орга­низаций допускается совместная обработка обезво­женных осадков и твердых бытовых отходов на территории очистных сооружений канализации или мусороперерабатывающих заводов.

6.341. Надлежит предусматривать использование обработанных осадков городских и близких к ним по составу производственных сточных вод в качест­ве органоминеральных удобрений.

 

Уплотнители и сгустители осадка

перед обезвоживанием или сбраживанием

 

6.342. Уплотнители и сгустители следует приме­нять для повышения концентрации активного ила. Допускается подача в них иловой смеси их аэротенков, а также совместное уплотнение сырого осад­ка и избыточного активного ила.

Для этой цели допускается применение илоуплотнителей гравитационного типа (радиальных, верти­кальных, горизонтальных), флотаторов и сгустите­лей.

Данные   по  проектированию  уплотнителей аэробно стабилизированных осадков приведены в п. 6.367.

6.343. При проектировании радиальных и гори­зонтальных илоуплотнителей надлежит принимать:

выпуск уплотненного осадка под гидростатичес­ким напором не менее 1 м;

илососы или илоскребы для удаления осадка; подачу иловой воды из уплотнителей в аэротенки;

число илоуплотнителей не менее двух. причем оба рабочие.

6.344. Данные для расчета гравитационных ило­уплотнителей следует принимать по табл. 58.

 

Таблица 58

 

 

Характеристика избыточного

Влажность уплотненного

активного ила, %

Продолжительность

уплотнения, ч

Скорость дви­жения жидкости

активного ила

 

Уплотнитель

в отстойной зоне вертикаль-

 

 

вертикальный

 

радиальный

 

вертикальный

 

радиальный

ного илоуп-лотнителя, мм/с

 

Иловая смесь из аэротенков с концентрацией 1,5—3 г/л

 

 

 

97,3

 

 

5 8

 

Активный ил из вторичных отстой­ников с концентрацией 4 г/л

 

98

97,3

10 12

9 11

Не более 0,1

Активный ил из зоны отстаивания аэротенков-отстойников с концентрацией 4,56,5 г/л

 

98

97

16

12 15

То же

 

Примечание. Продолжительность уплотнения избыточного активного ила производственных сточных вод допускается изменять в зависимости от его свойств.

 

6.345. Для флотационного сгущения активного ила надлежит применять метод напорной флота­ции с использованием резервуаров круглой или пря­моугольной формы. Флотационное уплотнение сле­дует производить как при непосредственном насы­щении воздухом объема ила, так и с насыщением рециркулирующей части осветленной воды.

Влажность уплотненного активного ила в зави­симости от типа флотатора и характеристики ила составляет 94,596,5 %.

6.346. Расчетные параметры и схемы флотацион­ных установок надлежит принимать по данным научно-исследовательских организаций.

 

Метантенки

 

6.347. Метантенки следует применять для ана­эробного сбраживания осадков городских сточных вод с целью стабилизации и получения метансодержащего газа брожения, при этом необходимо учитывать состав осадка, наличие веществ, тормозящих процесс сбраживания и влияющих на выход газа.

Совместно с канализационными осадками допу­скается подача в метантенки других сбраживаемых органических веществ после их дробления (домо­вого мусора, отбросов с решеток, производственных отходов органического происхождения и т. п.).

6.348. Для сбраживания осадков в метантенках допускается принимать мезофильный (Т = 33 °С) либо термофильный (Т = 53 °С) режим. Выбор режима сбраживания следует производить с уче­том методов последующей обработки и утилизации осадков, а также санитарных требований.

6.349. Для поддержания требуемого режима сбра­живания надлежит предусматривать:

загрузку осадка в мвтантенки, как правило, рав­номерную в течение суток;

обогрев метантенков острым паром, выпускаемым через эжектирующие устройства, либо подогрев осадка, подаваемого в метантенк, в тепло-обменных аппаратах. Необходимое количество теп­ла следует определять с учетом теплопотерь метан­тенков в окружающую среду.

6.350. Определение вместимости метантенков следует производить в зависимости от фактической влажности осадка по суточной дозе загрузки, прини­маемой для осадков городских сточных вод по табл. 59, а для осадков производственных сточных вод — на основании экспериментальных данных; при наличии в сточных водах анионных поверхност­но-активных веществ (ПАВ) суточную дозу загруз­ки надлежит проверять согласно п. 6.351.

 

Таблица 59

 

 

Режим сбраживания

Суточная доза загружаемого осадка Дmt, %, при влажности загружаемого осадка, %, не более

 

 

93

94

95

96

97

 

Мезофипьный

 

 

7

 

8

 

8

 

9

 

10

Термофильный

 

14

16

17

18

19

 

6.351. При наличии а сточных водах ПАВ величи­ну суточной дозы загрузки Дmt, %, принятую по табл. 59, надлежит проверять по формуле

 

                                (110)

 

где Сdt содержание поверхностно-активных ве­ществ (ПАВ) в осадке, мг/г сухого ве­щества осадка, принимаемое по экспе­риментальным данным или по табл. 60;

Pmud влажность загружаемого осадка, %;

Дlim предельно допустимая загрузка рабоче­го объема метантенка в сутки, прини­маемая, г/м3:

40 для алкилбензолсульфонатов с прямой алкильной цепью;

85 дли других мягких" и промежу­точных анионных ПАВ;

65 — для анионных ПАВ в бытовых сточных водах.

Если значение суточной дозы, определенное по формуле (110), менее указанного в табл. 59 для за­данной влажности осадка, то вместимость метантен­ка необходимо откорректировать с учетом дозы загрузки, если равно или превышает — корректи­ровка не производится.

 

Таблица 60

 

 

Исходная концентрация

Содержание ПАВ, мг/г сухого

вещества осадка

ПАВ в сточной воде, мг/л

осадок из первичных отстойников

избыточный

ак­тивный ил

 

5

 

5

 

5

10

9

5

15

13

7

20

17

7

25

20

12

30

 

24

12

 

6.352. Распад беззольного вещества загружаемого осадка Rr, %, в зависимости от дозы загрузки над­лежит определять по формуле

 

                                    (111)

 

где Rlim максимально возможное сбраживание беззольного   вещества  загружаемого осадка, %, определяемое по формуле (112);

Кr коэффициент, зависящий от влажности осадка и принимаемый по табл. 61;

Дmt доза загружаемого осадка, %, прини­маемая согласно п. 6.350.

 

Таблица 61

 

 

Режим сбраживания

Значение коэффициента Kr при влажности

загружаемого осадка, %

 

93

94

95

96

97

 

Мезофильный

 

 

1,05

 

0,89

 

0,72

 

0,56

 

0,40

Термофильный

 

0,455

0,385

0,31

0,24

0,17

 

6.353. Максимально возможное сбраживание без­зольного вещества загружаемого осадка Rlim, %, следует определять в зависимости от химического состава осадка по формуле

 

                            (112)

 

где Cfat, Cgl, Cprt соответственно содержание жи­ров, углеводов и белков, г на 1 г беззольного вещества осад­ка.

При отсутствии данных о химическом составе осадка величину Rlim допускается принимать: для осадков из первичных отстойников — 53 %; для из­быточного активного ила — 44 %; для смеси осадка с активным илом — по среднеарифметическому со­отношению смешиваемых компонентов по беззоль­ному веществу.

6.354. Весовое количество газа, получаемого при сбраживании, надлежит принимать 1 г на 1 г распав­шегося беззольного вещества загружаемого осадка, объемный вес газа — 1 кг/м3, теплотворную способ­ность — 5000 ккал/м3.

6.365. Влажность осадка, выгружаемого из метан­тенка, следует принимать в зависимости от соот­ношения загружаемых компонентов по сухому ве­ществу с учетом распада беззольного вещества, оп­ределяемого согласно п. 6.352.

6.356. При проектировании метантенков надле­жит предусматривать:

мероприятия по взрывопожаробезопасности оборудования и обслуживающих помещений — в соот­ветствии с ГОСТ 12.3.006-75;

герметичные резервуары метантенков, рассчитан­ные на избыточное давление газа до 5 кПа (500 мм вод. ст.);

число метантенков — не менее двух, при этом все метантенки должны быть рабочими;

отношение диаметра метантенка к его высоте (от днища до основания газосборной горловины) — не более 0,81;

расположение статического уровня осадка — на 0,2 — 0,3 м выше основания горловины, а верха горловины — на 1,0 — 1,5 м выше динамического уровня осадка;

площадь газосборной горловины — из условия пропуска 600—800 м3 газа на 1 м2 в сутки;

расположение открытых концов труб для отвода газа из газового колпака — на высоте не менее 2 м от динамического уровня;

загрузку осадка в верхнюю зону метантенка и выгрузку из нижней зоны;

систему опорожнения резервуаров метантен­ков — с возможностью подачи осадка из нижней зо­ны в верхнюю;

переключения,  обеспечивающие возможность промывки всех трубопроводов;

перемешивающие устройства, рассчитанные на пропуск всего объема бродящей массы в течение 510 ч;

герметически закрывающиеся люки-лазы, смот­ровые люки;

расстояние от метантенков до основных соору­жений станций, внутриплощадочных автомобильных дорог и железнодорожных путей — не менее 20 м, до высоковольтных линий — не менее 1,5 высоты опоры;

ограждение территории метантенков.

6.357. Газ, получаемый в результате сбраживания осадков в метантенках, надлежит использовать в теплоэнергетическом хозяйстве очистной станции и близрасположенных объектов.

6.368. Проектирование газового хозяйства метантенков (газосборных пунктов, газовой сети, газ­гольдеров и т. п.) следует осуществлять в соответст­вии с „Правилами безопасности в газовом хозяйст­ве" Госгортехнадзора СССР.

6.359. Для регулирования давления и хранения газа следует предусматривать мокрые газгольдеры. вместимость которых рассчитывается на 2 — 4-ча­совой выход газа, давление газа под колпаком 1,52,5 кПа (150 250 мм вод. ст.).

6.360. При обосновании допускается применение двухступенчатых метантенков в районах со средне­годовой температурой воздуха не ниже 6 °С и при ограниченности территории для размещения иловых площадок.

6.361. Метантенки первой ступени надлежит проектировать на мезофильное сбраживание согласно пп. 6.347 6.356.

6.362. Метантенки второй ступени надлежит проектировать в виде открытых резервуаров без подогрева.

Выпуск иловой воды следует предусматривать на разных уровнях по высоте сооружения, удаление осадка — из сборного приямка по иловой трубе диа­метром не менее 200 м под гидростатическим на­пором не менее 2 м.

Вместимость метантенков второй ступени сле­дует рассчитывать исходя из дозы суточной загруз­ки, равной 3 — 4 %.

Метантенк второй ступени следует оборудовать механизмами для удаления накапливающейся кор­ки.

6.363. Влажность осадка, удаляемого из метан­тенков второй ступени, следует принимать, %, при сбраживании:  осадка из первичных отстойни­ков — 92; осадка совместно с избыточным актив­ным илом — 94.

 

Аэробные стабилизаторы

 

6.364. На аэробную стабилизацию допускается направлять неуплотненный или уплотненный в те­чение не более 5 ч активный ил, а также смесь его с сырым осадком.

6.365. Для аэробной стабилизации следует пре­дусматривать сооружения типа коридорных аэротенков.

Продолжительность аэрации надлежит принимать, сут: для неуплотненного активного ила — 2—5, смеси осадка первичных отстойников и неуплотненного ила — 67, смеси осадка и уплотненного актив­ного ила — 8—12 (при температуре 20 °С).

При более высокой температуре осадка продол­жительность  аэробной  стабилизации надлежит уменьшать, а при меньшей увеличивать. При из­менении температуры на 10 °С продолжительность стабилизации соответственно изменяется в 2 — 2,2 раза.

Аэробная стабилизация осадка может осущест­вляться в диапазоне температур 8—35 °С.

Для осадков производственных сточных вод про­должительность процесса надлежит определять экс­периментально.

6.366. Расход воздуха на аэробную стабилизацию следует принимать 12 м3/ч на 1 м3 вместимости стабилизатора в зависимости от концентрации осад­ка соответственно 99,5—97,5 %. Пои этом интенсивность аэрации следует принимать не менее 6 м3/(м2×ч).

6.367. Уплотнение аэробно стабилизированного осадка следует предусматривать или в отдельно стоящих илоуплотнителях, или в специально выде­ленной зоне внутри стабилизатора в течение не более 5 ч. Влажность уплотненного осадка должна быть 96,598,5 %.

Иловая вода из уплотнителей должна направляться в аэротенки. Ее загрязнения следует принимать по БПКполн 200 мг/л, по взвешенным веществам до 100 мг/л.

 

Сооружения для механического

обезвоживания осадка

 

6.368. Осадки городских сточных вод, подлежащие механическому обезвоживанию, должны подвергаться предварительной обработке — уплотнению, промывке {для сброженного осадка), коагулированию химическими реагентами. Необходимость предварительной обработки осадков производственных сточных вод следует устанавливать экспериментально.

6.369. Перед обезвоживанием сброженного осадка на вакуум-фильтрах или фильтр-прессах следует предусматривать его промывку очищенной сточной водой.

Количество промывной воды следует принимать, м33:

для сброженного сырого осадка — 1—1,5;

для сброженной в мезофильных условиях смеси сырого осадка и избыточного активного ила — 2—3;

то же, в термофильных условиях — 3—4.

При наличии данных об удельном сопротивлении осадка расход промывной воды qww, м33, следует определять по формуле

 

                                           (113)

 

где rmud удельное сопротивление осадка, см/г.

6.370. Продолжительность промывки следует принимать 15—20 мин, числа резервуаров для промывки осадка — не менее двух. В резервуарах надлежит предусматривать устройства для удаления всплывающих веществ, перемешивания и периодической очистки.

При перемешивании воздухом количество его определяется из расчета 0,5 м33 смеси промываемого осадка и воды.

6.371. Для уплотнения смеси промытого осадка и воды следует предусматривать уплотнители, рассчитанные на 12—18 ч пребывания в них смеси при мезофильном режиме сбраживания и на 20—24 ч — при термофильном режиме.

Число уплотнителей надлежит принимать не менее двух. Удаление осадка из уплотнителей следует предусматривать насосами плунжерного типа.

Влажность уплотненного осадка следует принимать 94—96 % в зависимости от исходного осадка и количества добавленного активного ила.

Удаление иловой воды из уплотнителей надлежит предусматривать на очистные сооружения, которые следует рассчитывать с учетом дополнительного количества загрязняющих веществ.

Количество загрязняющих веществ в иловой во­де из уплотнителей следует принимать: по взвешенным веществам — 1000—1500 мг/л, по БПКполн 600900 мг/л.

Для уменьшения выноса из уплотнителей взвешенных веществ и снижения влажности уплотненного осадка следует предусматривать подачу фильтрата от вакуум-фильтров в илоуплотнители, а также замену промывной воды 0,1 %-ным раствором хлорного железа, для приготовления которого используется 50 % общего потребного количества хлорного железа.

В уплотнителях надлежит предусматривать устройства для удаления всплывающих веществ.

6.372. Перед  обезвоживанием на камерных фильтр-прессах для извлечения крупных включений из осадка первичных отстойников следует преду сматривать решетки с прозорами 10 мм или вибропроцеживающие аппараты с сетками ячеек размером 10Х10 мм.

6.373. В качестве реагентов при коагулировании осадков городских сточных вод следует применять хлорное железо или сернокислое окисное железо и известь в виде 10 %-ных растворов.

Добавку извести в осадок следует предусматривать после введения хлорного или сернокислого окисного железа.

Количество реагентов следует определять в расчете по FeCl3 и CaO, при этом их дозы при вакуум-фильтровании надлежит принимать, % к массе сухого вещества осадка:

для сброженного осадка первичных отстойников: FеСl3 34, СаО 810;

для сброженной промытой смеси осадка первичных отстойников и избыточного активного ила: FeCl3 46, СаО 1220;

для сырого осадка первичных отстойников: FeCl3 1,53, СаО 610;

для смеси осадка первичных отстойников и уплотненного избыточного активного ила: FeCl3 35, СаО 913;

для уплотненного избыточного ила из аэротенков: FeCl3 69, СаО 1725.

 

Примечания: 1. Большие значения доз реагентов надлежит принимать для осадка, сброженного при термофильном режиме.

2. При обезвоживании аэробно стабилизированного осадка доза реагентов на 30 % менее дозы для мезофильно сброженной смеси.

3. Доза Fe2(SO4)3 во всех случаях увеличивается по сравнению с дозами хлорного железа на 30—40 %.

4. При обезвоживании осадка на камерных фильтр-прессах доза извести принимается во всех случаях на 30 % более.

 

6.374. Смешение реагентов с осадком следует предусматривать в смесителях.

Применение центробежных насосов для перекачки скоагулированного осадка не допускается.

6.375. Надлежит  предусматривать  промывку фильтровальной ткани вакуум-фильтров и фильтр-прессов производственной водой, а также периоди­ческую регенерацию ее 8—10 %-ным раствором ингибированной соляной кислоты.

6.376. Количество ингибированной соляной кислоты надлежит определять исходя из годовой потребности кислоты 20 %-ной концентрации на 1 м2 фильтрующей поверхности: 20 л — для вакуум-фильтра со сходящим полотном и 50 л — для фильтров других типов.

6.377. Склад хлорного или сернокислого окисного железа и соляной кислоты надлежит рассчитывать из условия хранения их 2030-суточного запаса, извести — 15-суточного.

Число резервуаров кислоты и раствора хлорного железа следует принимать не менее двух.

В случае доставки реагентов железнодорожными цистернами вместимость резервуара должна быть не менее вместимости цистерны.

6.378. Производительность    вакуум-фильтров, фильтр-прессов и влажность кека при обезвоживании осадков городских сточных вод следует прини­мать по табл. 62.

Производительность вакуум-фильтров и фильтр-прессов при обезвоживании осадков производственных сточных вод необходимо принимать по опытным данным.

 

Таблица 62

 

 

Производительность, кг сухого вещества осадка

 

Влажность кека, %

Характеристика обрабатываемого осадка

на 1 м2 поверхности фильтра в 1 ч

 

при вакуум-

 

при фильтр-

 

вакуум-фильтров

фильтр-прессов

фильтровании

прессовании

 

Сброженный оса­док из первичных отстойников

 

 

25 35

 

12 17

 

75 77

 

60 65

 

Сброженная в мезофильных усло­виях смесь осадка из первичных отстойников и активного ила, аэробно стабили­зированный активный ил

 

 

20 25

 

10 16

 

78 80

 

62 68

 

Сброженная в термофильных усло­виях смесь осадка из первичных отстойников и активного ила

 

 

17 22

 

7 13

 

78 80

 

62 70

 

Сырой осадок из первичных отстойников

 

 

30 40

 

12 16

 

72 75

 

55 60

 

Смесь сырого осадка из первичных отстойников и уплотненного активного ила

 

 

20 30

 

5 12

 

75 80

 

62 75

 

Уплотненный активный ил стан­ций аэрации населенных пунктов

 

 

8 12

 

2 7

 

85 87

 

80 83

 

Примечание. Для вакуум-фильтрования сырых осадков надлежит предусматривать барабанные вакуум-фильтры со сходящим полотном.

 

6.379. Величину вакуума при вакуум-фильтровании следует принимать в пределах 4065 кПа (300500 мм рт. Ст.), давление сжатого воздуха на отдуве осадка 2030 кПа (0,203 кгс/см2). Производительность вакуум-насосов надлежит определять из условия расхода воздуха 0,5 м3/мин на 1 м2 площади фильтра, а расход сжатого воздуха — 0,1 м3/мин на 1 м2 площади фильтра.

При фильтр-прессовании подачу скоагулированного осадка надлежит предусматривать под давле­нием не менее 0,6 МПа (6 кгс/см2); расход сжато го воздуха на просушку осадка следует принимать 0,2 м3/мин на 1 м2 фильтровальной поверхности давление сжатого воздуха не менее 0,6 МПа (6 кгс/см2); расход промывной воды 4 л/мин на 1 м2 фильтровальной поверхности; давление промывной воды — не менее 0,3 МПа (3 кгс/см2).

6.380. Допускается применение для обезвоживания осадков непрерывно действующих осадительных горизонтальных центрифуг со шнековой выгрузкой осадка. Производительность центрифуг по исходному осадку qcf, м3/ч, следует определять по формуле

 

                                  (114)

 

где  lrot, drot соответственно длина и диаметр ротора, м.

При работе с флокулянтами производительность центрифуг необходимо принимать в 2 раза меньшей. Эффективность задержания сухого вещества при этом увеличивается до 90—95 %.

Эффективность задержания сухого вещества и влажность кека следует принимать по табл. 63.

 

Таблица 63

 

 

Характеристика

обрабатываемого осадка

Эффективность задержания сухого вещества, %

 

Влажность

кека, %

 

Сырой или сброженный осадок из первичных отстойников

 

 

45 65

 

65 75

 

Анаэробно сброженная смесь осадка из первичных отстойников и активного ила

 

 

25 40

 

65 75

 

Аэробно стабилизированная смесь осадка из первичных отстойников и активного ила

 

 

25 35

 

70 80

 

Сырой активный ил при зольности, %:

     2835

     3842

     4447

 

 

 

10 — 15

15 25

25 35

 

 

75 85

70 80

60 75

 

Примечание. Центрифугирование активного ила целесообразно применять для удаления его избыточного количества.

 

 

6.381. Перед подачей осадка на центрифуги необходимо предусматривать удаление из него песка, а перед центрифугами с диаметром ротора менее 0,5 м — установку решеток дробилок.

6.382. При подаче фугата после центрифуг на очистные сооружения надлежит учитывать увеличение нагрузки на них по БПКполн в зависимости от эффективности задержания сухого вещества из расчета 1 мг БПКполн на 1 мг остаточного сухого вещества в фугате.

6.383. Для предотвращения увеличения нагрузки на очистные сооружения надлежит предусматривать дополнительную обработку фугата:

аэробную стабилизацию в смеси с осадком пер­вичных отстойников и избыточным активным илом с последующим гравитационным уплотнением в те­чение 3—5 ч;

иловые площадки для фугата, полученного после центрифугирования сброженных осадков, при этом нагрузку на площадки на искусственном основании с дренажем следует принимать по табл. 64 с коэффи­циентом 2;

возврат в аэротенки фугата после центрифугиро­вания неуплотненного активного ила.

 

Таблица 64

 

 

Иловые площадки

Характеристика осадка

на естественном основании

на естественном основании с дренажам

на искусствен-ном асфаль-тобетонном основании с дренажем

каскадные с от­стаиванием и поверх-ностным удалением ило­вой воды на естествен-ном основании

 

площадки-уплотнители

 

Сброженная в мезофильных условиях смесь осадка из первичных отстойников и активного ила

 

 

1,2

 

1,5

 

2,0

 

1,5

 

1,5

 

То же, в термофильных условиях

 

 

0,8

 

1,0

 

1,5

 

1,0

 

1,0

 

Сброженный осадок из первичных от­стойников и осадок из двухъярусных отстойников

 

 

2,0

 

2,3

 

2,5

 

2,0

 

2,3

 

Аэробно стабилизи-рованная смесь ак­тивного ила и осадка из первичных от­стойников или стабилизированный активный ил

 

 

1,2

 

1,5

 

2,0

 

1,5

 

1,5

 

Примечание. Нагрузку на иловые площадки в других климатических условиях следует определять с учетом климати­ческого коэффициента, приведенного на черт. 3.

 

 

Черт. 3. Климатические коэффициенты для определения величины нагрузки на иловые площадки (сплошные и пунктирные линии) и продолжительности периода намораживания на иловых площадках,

дни (точечные линии)

 

6.384. Доза высокомолекулярных флокулянтов катионного типа — 2—7 кг/т сухого вещества осадка. Большую дозу флокулянтов надлежит принимать при центрифугировании активного ила, меньшую — для сырого осадка.

Влажность обезвоженного активного ила следует принимать 83—88 %, сырого осадка — 70—75 %.

Фугат следует возвращать на очистные сооруже­ния без дополнительной обработки. Объем очистных сооружений при этом не увеличивается.

Применение флокулянтов рекомендуется при ис­пользовании центрифуг с отношением длины ротора к диаметру 2,5—4.

6.385. Количество резервного оборудования над­лежит принимать:

вакуум-фильтров и фильтр-прессов при коли­честве рабочих единиц до трех — 1, от четырех до десяти — 2;

центрифуг при количестве рабочих единиц до двух 1, трех и более — 2.

6.386. При проектировании механического обез­воживания осадка необходимо предусматривать аварийные иловые площадки на 20 % годового количества осадка.

 

Иловые площадки

 

6.387. Иловые площадки допускается проектиро­вать на естественном основании с дренажем и без дренажа, на искусственном асфальтобетонном ос­новании с дренажем, каскадные с отстаиванием и поверхностным удалением иловой воды, площадки-уплотнители.

6.388. Нагрузку осадка на иловые площадки, м32 в год, в районах со среднегодовой темпера­турой воздуха 3—6 °С и среднегодовым количест­вом атмосферных осадков до 500 мм надлежит при­нимать по табл. 64.

6.389. На иловых площадках должны предусмат­риваться дороги со съездами на карты для авто­транспорта и средств механизации с цепью обеспе­чения механизированной уборки, погрузки и тран­спортирования подсушенного осадка.

Для уборки и вывоза подсушенного осадка следует предусматривать механизмы, используемые на земляных работах.

6.390. Иловые площадки на естественном осно­вании допускается проектировать при условии залегания грунтовых вод на глубине не менее 1,5 м от поверхности карт и только в тех случаях, когда допускается фильтрация иловых вод в грунт.

При меньшей глубине залегания грунтовых вод следует предусматривать понижение их уровня или применять иловые площадки на искусственном асфальтобетонном основании с дренажем.

6.391. При проектировании иловых площадок надлежит принимать: рабочую глубину карт — 0,7—1 м; высоту оградительных валиков — на 0,3 м выше рабочего уровня; ширину валиков поверху — не менее 0,7 м, при использовании меха­низмов для ремонта земляных валиков 1,8 — 2 м; уклон дна разводящих труб или лотков — по расчету, но не менее 0,01; число карт — не менее че­тырех.

6.392. При проектировании иловых площадок с отстаиванием и поверхностным отводом иловой воды надлежит принимать:

число каскадов — 4—7; число карт в каждом каскаде — 4—8;

полезную площадь одной карты — от 0,25 до 2 га; ширину карт — 30—100 м (при уклонах мест­ности 0,004—0,08), 50—100 м (при уклонах 0,010,04) , 60100 м (при уклонах 0,01 и менее); дли­ну карт при уклонах свыше 0,04 — 80—100 м, при уклонах 0,01 и менее 100—250 м, отношение ширины к длине 1:2 — 1:2,5; высоту оградительных валиков и насыпей для дорог до 2,5 м; рабочую глубину карт на 0,3 м менее высоты оградитель­ных валиков; напуски осадка: при 4 картах в кас­каде — на 2 первые карты, при 7—8 картах в каска­де — на 3—4 первые карты; перепуски иловой во­ды между картами — в шахматном порядке: коли­чество иловой воды — 30—50 % количества обез­воживаемого осадка.

6.393. Допускается предусматривать иловые площадки-уплотнители рабочей глубиной до 2 м в виде прямоугольных карт-резервуаров с водонепроницае­мыми днищами и стенами. Для выпуска иловой воды, выделяющейся при отстаивании осадка, вдоль продольных стен надлежит предусматривать отвер­стия, перекрываемые шиберами.

6.394. При проектировании площадок-уплотните­лей следует принимать:

ширину карт 9—18 м;

расстояние между вы пусками иловой воды — не более 18 м;

устройство пандусов для возможности механи­зированной уборки высушенного осадка.

6.395. Площадь иловых площадок следует прове­рять на намораживание. Для намораживания осадка допускается использование 80% площади иловых площадок (остальные 20 % площади предназначаются для использования во время весеннего тая­ния намороженного осадка).

Продолжительность периода намораживанин сле­дует принимать равной числу дней со среднесуточ­ной температурой воздуха ниже минус 10 °С (см. черт. 3).

Количество намороженного осадка допускается принимать равным 75 % поданного на иловые пло­щадки за период намораживания.

Высоту намораживаемого слоя осадка надлежит принимать на 0,1 м менее высоты валика. Дно раз­водящих лотков или труб должно быть выше го­ризонта намораживания.

6.396. Искусственное дренирующее основание иловых площадок должно составлять не менее 10 % площади карты. Конструкцию и размещение дре­нажных устройств и размеры площадок следует принимать с учетом механизированной уборки осадка.

6.397. Твердое покрытие иловых площадок необходимо устраивать из двух слоев асфальта тол­щиной по 0,015—0,025 м и по щебеночно-песчаной подготовке толщиной 0,1 м, асфальтобетонное или бетонное — в зависимости от типа механизмов, при­меняемых для уборки осадка.

6.398. Подачу иловой воды с иловых площадок следует предусматривать на очистные сооружения, при этом сооружения рассчитываются с уметом до­полнительных загрязняющих веществ и количества иловой воды. Дополнительные количества загряз­няющих веществ от иловой воды надлежит прини­мать: при сушке сброженных осадков — по взве­шенным веществам 1000—2000 мг/л, по БПКполн 1000—2000 мг/л (большие значения для площа­док-уплотнителей, меньшие — для других типов иловых площадок), для аэробно стабилизирован­ных осадков — по п. 6.367.

6.399. Иловые площадки при обосновании до­пускается устраивать на намывном (насыпном) грунте.

6.400. При размещении иловых площадок вне территории станций очистки для обслуживающего персонала следует предусматривать служебное и бы­товые помещения, а также кладовую согласно п. 5.26 и телефонную связь.

 

Сооружения для обеззараживания,

компостирования, термической сушки

и сжигания осадка

 

6.401. Осадок надлежит подвергать обеззаражи­ванию в жидком виде или после подсушки на ило­вых площадках, или после механического обезво­живания.

6.402. Обеззараживание и дегельминтизацию сы­рых, мезофильно сброженных и аэробно стабилизи­рованных осадков следует осуществлять путем их прогревания до 60 °С с выдерживанием не ме­нее 20 мин при расчетной температуре.

Для обеззараживания обезвоженных осадков допускается применять биотермическую обработку (компостирование) в полевых условиях.

6.403. Компостирование осадков следует осу­ществлять в смеси с наполнителями (твердыми бы­товыми отходами, торфам, опилками, листвой, соломой, молотой корой) или готовым компостом. Соотношение компонентов смеси обезвоженных осадков сточных вод и твердых бытовых отходов составляет 1:2 по массе, а с другими указанными наполнителями — 1:1 по объему с получением сме­си влажностью не более 60 %.

6.404. Процесс компостирования следует осу­ществлять на обвалованных асфальтобетонных или бетонных площадках с использованием средств механизации в штабелях высотой от 2,5 до 3 м при естественной и до 5 м при принудительной аэрации.

6.405. При проектировании аэрируемых штабе­лей необходимо предусматривать:

укладку в основании каждого штабеля перфори­рованных труб диаметрами 100—200 мм с разме­рами отверстий 8—10 мм;

подачу воздуха (расход воздуха 1525 м3/ч на 1 т органического вещества осадка).

6.406. Длительность процесса компостирования надлежит принимать в зависимости от способа аэра­ции, состава осадка, вида наполнителя, климати­ческих условий и на основании опыта эксплуатации в аналогичных условиях или по данным научно-исследовательских организаций.

В процессе компостирования необходимо преду­сматривать перемешивание смеси.

6.407. Необходимость термической сушки осадка должна определяться условиями дальнейшей утили­зации и транспортирования.

6.408. Для термической сушки осадков следует применять сушилки различных типов.

6.409. Подбор сушилок следует производить ис­ходя из производительности по испаряемой влаге с учетом паспортных данных оборудования.

6.410. Перед подачей на сушку необходимо осу­ществлять максимально возможное обезвоживание осадков с целью снижения энергоемкости процесса.

6.411. Влажность высушенного осадка следует принимать в пределах 30—40 %.

6.412. При обосновании допускается сжигание осадка, не подлежащего дальнейшей утилизации, в печах различных типов.

6.413. Отводимые от установок для сушки и сжигания осадка газы перед выбросом в атмосферу должны отвечать требованиям СН 245-71.

 

Сооружения для хранения

и складирования осадка

 

6.414. Для хранения механически обезвоженного осадка надлежит предусматривать открытые пло­щадки с твердым покрытием. Высоту слоя осадка на площадках следует принимать 1,5—3 м.

Для хранения термически высушенного осадка с учетом климатических условий следует применять аналогичные площадки, при обосновании — закры­тые склады.

Хранение механически обезвоженного, термиче­ски высушенного осадка следует предусматривать в объеме 3—4-месячного производства.

Следует предусматривать механизацию погрузоч­но-разгрузочных работ.

6.415. Для неутилизируемых осадков должны быть предусмотрены сооружения, обеспечивающие их складирование в условиях, предотвращающих загрязнение окружающей среды. Места складирования должны быть согласованы с органами госнад­зора.

 

7. ЭЛЕКТРООБОРУДОВАНИЕ,

ТЕХНОЛОГИЧЕСКИЙ КОНТРОЛЬ,

АВТОМАТИЗАЦИЯ И СИСТЕМЫ

ОПЕРАТИВНОГО УПРАВЛЕНИЯ

 

ОБЩИЕ УКАЗАНИЯ

 

7.1. Категории надежности  электроснабжения электроприемников сооружений систем канализа­ции следует определять по Правилам устройства электроустановок (ПУЭ) Минэнерго СССР.

Категория надежности электроснабжения насос­ных и воздуходувных станций должна соответство­вать их надежности действия и приниматься по п. 5.1.

7.2. Выбор напряжения электродвигателей сле­дует производить в зависимости от их мощности, принятой схемы электропитания и с учетом перс­пективы развития проектируемого объекта.

Выбор исполнения электродвигателей должен зависеть от окружающей среды.

При выборе электродвигателей, как правило, следует учитывать возможную комплектацию.

Компенсация реактивной мощности должна вы­полняться в соответствии с требованиями Руководящих указаний по компенсации реактивной мощ­ности" Минэнерго СССР.

7.3. Распределительные устройства, трансформа торные подстанции и щиты управления для соору­жений с нормальной средой следует размещать во встраиваемых или пристраиваемых к сооружению помещениях и учитывать возможность их расшире­ний и увеличения мощности.

При сооружении подстанции глубокого ввода напряжением 110 или 35 кВ для питания очистных сооружений распределительное устройство подстан­ции на 6—10 кВ рекомендуется совмещать с распределительным устройством очистных сооружений.

В насосных станциях допускается установка закрытых щитов в машинном зале на полу или бал­коне при условии принятия мер, исключающих по­падание на них воды и затопление при аварии.

7.4. Классификацию взрывоопасных зон помеще­ний и смежных с взрывоопасной зоной других по­мещений, а также категории и группы взрывоопасной смеси следует принимать в соответствии с ПУЭ-76, ГОСТ 12.1.011-78 и СН 463-74.

7.5. Электродвигатели, пусковые устройства и приборы на сооружениях для обработки и перекач­ки сточных вод, содержащих легковоспламеняющи­еся. взрывоопасные вещества, следует принимать в соответствии с ПУЭ-76 и ГОСТ 12.2.020-76.

Предусматривать установку двигателей внутрен­него сгорания в этих насосных станциях запре­щается.

7.6. В системах технологического контроля необ­ходимо предусматривать:

средства и приборы постоянного контроля;

средства периодического контроля, например, для наладки и проверки работы сооружений.

7.7. Технологический контроль качественных па­раметров сточных вод допускается осуществлять путем непрерывного инструментального контроля с помощью промышленных приборов и анализато­ров или лабораторными методами.

7.8. В конструкциях сооружений следует пре­дусматривать узлы, закладные детали, проемы, камеры и прочие устройства для установки средств электрооборудования и автоматизации, на соедини­тельных линиях — защиту от засорения (раздели­тельные мембраны, продувку или промывку соеди­нительных линий и др.).

7.9. Объем автоматизации и степень оснащения сооружений средствами технологического контроля необходимо устанавливать в зависимости от усло­вий эксплуатации, обосновывать технико-экономическими расчетами с учетом социальных факторов.

Автоматизацию следует выполнять по заданным технологическим параметрам или в отдельных слу­чаях по временной программе.

В первую очередь автоматизации подлежат насос­ные установки.

7.10. Для обеспечения централизованного управ­ления и контроля работы сооружений следует пре­дусматривать диспетчерское управление системой канализации, использующее в необходимых случаях средства телемеханики.

7.11. Для крупных систем канализации в тех слу­чаях, когда на объектах, которым они подведомственны, функционируют автоматизированные систе­мы  управления технологическими процессами (АСУТП), следует предусматривать подсистемы, обеспечивающие сбор, обработку и передачу необхо­димой информации, а также решение отдельных задач по управлению.

7.12. Диспетчерское управление должно преду­сматриваться, как правило, одноступенчатое с од­ним диспетчерским пунктом. Для наиболее круп­ных канализационных систем со сложными сооружениями и большими расстояниями между ними до­пускается двухступенчатое управление с централь­ным и местным диспетчерскими пунктами.

7.13. Связь между диспетчерским пунктом и контролируемыми объектами, а также помещения­ми дежурного персонала и мастерскими следует осу­ществлять посредством прямой диспетчерской связи.

Следует, как правило, предусматривать прямую диспетчерскую связь между диспетчерским пунктом канализации и диспетчерским пунктом энергохо­зяйства промышленного предприятия, а в случае его отсутствия — с центральным диспетчерским пунк­том промышленного предприятия.

7.14. С контролируемых сооружений на диспет­черский пункт должны передаваться только те сигналы и измерения, без которых не могут быть обе­спечены оперативное управление и контроль рабо­ты сооружений, скорейшая ликвидация и локализация аварий.

7.15. На диспетчерский пункт очистных сооруже­ний следует передавать следующие измерения и сигнализацию.

Измерения:

расхода сточных вод, поступающих на очистные сооружения, или расхода очищенных сточных вод;

рН сточных вод (при необходимости);

концентрации растворенного кислорода в сточ­ных водах (при необходимости);

температуры сточных вод;

общего расхода воздуха, подаваемого на аэротенки;

расхода активного ила, подаваемого на аэротенки;

расхода избыточного активного ила;

расхода сырого осадка, подаваемого на соору­жения по его обработке.

 

Сигнализация:

аварийного отключения оборудования;

нарушения технологического процесса;

предельных уровней сточных вод и осадков в резервуарах, в подводящем канале здания решеток или решеток-дробилок;

предельной концентрации взрывоопасных газов в производственных помещениях;

предельной концентрации хлор-газа в помеще­ниях хлораторной.

7.16. Помещения диспетчерских пунктов допу­скается блокировать с технологическими сооруже­ниями: производственно-административным корпусом, воздуходувной станцией и др. (при размеще­нии диспетчерского пункта в воздуходувной стан­ции его следует изолировать от шума).

В диспетчерских пунктах следует предусматривать следующие помещения:

диспетчерскую для размещения диспетчерского щита, пульта и средств связи с постоянным пребыванием дежурного персонала;

вспомогательные помещения (кладовую, ремонтную мастерскую, комнату отдыха, санузел).

 

НАСОСНЫЕ И ВОЗДУХОДУВНЫЕ СТАНЦИИ

 

7.17. Насосные станции, как правило, должны проектироваться с управлением без постоянного обслуживающего персонала. При этом рекоменду­ются следующие виды управления:

автоматическое управление насосными агрегатами в зависимости от уровня сточной жидкости в приемном резервуаре;

местное — с периодически приходящим персона­лом и с передачей необходимых сигналов на диспетчерский пункт.

7.18. В насосных станциях, оборудованных агрегатами с электродвигателями мощностью свыше 100 кВт и получающих электропитание от собствен­ных трансформаторных подстанций (ТП), следует учитывать возможность появления ударных толчков нагрузки в трансформаторах, величина и частота которых ограничиваются заводами-изготовите­лями.

7.19. В насосных станциях, оборудованных агре­гатами с высоковольтными электродвигателями. не допускающими их автоматизацию по уровню" в связи с невозможностью обеспечения необходи­мой частоты включения приводов масляных выклю­чателей из-за малого ресурса или ограниченной ча­стоты включения электродвигателей, рекоменду­ется использование регулируемого привода.

Регулируемым электроприводом следует оборудовать. как правило, один насосный агрегат в груп­пе из двух-трех рабочих агрегатов.

Управление регулируемыми электроприводами следует осуществлять автоматически в зависимости от уровня в приемном резервуаре.

7.20. На насосных станциях, имеющих сложные коммуникации, требующие частых переключении, а также технологическое оборудование, не приспо­собленное для автоматизации, допускается наличие постоянного обслуживающего персонала. При этом управление агрегатами должно производиться цент­рализованно со щита управления.

7.21. На автоматизированных насосных станциях независимо от категории надежности действия при аварийном отключении насосных агрегатов следует осуществлять автоматическое включение резервного агрегата.

На телемеханизированных объектах автомати­ческое включение резервного агрегата следует осу­ществлять на насосных станциях первой категории надежности действия.

7.22. При аварийном затоплении насосной стан­ции следует предусматривать автоматическое от­ключение основных насосных агрегатов.

7.23. Пуск насосных агрегатов должен, как пра­вило, производиться при открытых напорных за­движках на обратный клапан. Пуск насосных агрега­тов при закрытых задвижках следует предусматривать при опасности гидравлических ударов, а также при наличии требований, связанных с за­пуском синхронных электродвигателей, и в других обоснованных случаях.

7.24. В насосных станциях следует контролировать следующие технологические параметры:

расход перекачиваемой жидкости (при необхо­димости);

уровни в приемном резервуаре;

уровни в дренажном приямке;

давление в напорных трубопроводах;

давление, развиваемое каждым насосным аг­регатом;

давление воды в системе гидроуплотнения.

7.25. В насосных станциях следует предусматривать местную аварийно-предупредительную сигнали­зацию. При отсутствии постоянного обслуживаю­щего персонала предусматривается передача обще­го сигнала о неисправности на диспетчерский пункт или пункт с круглосуточным дежурством.

7.26. В воздуходувных станциях, как правило, следует   предусматривать  местное  управление воздуходувными агрегатами из машинного зала. В отдельных случаях допускается предусматривать дистанционное управление агрегатами из диспетчерского или оперативного пункта.

Последовательность операции по пуску и оста­новке воздуходувного агрегата, а также контроль отдельных его параметров должны быть выполнены системой автоматизации с учетом рекомендаций заводской инструкции.

При обосновании следует предусматривать авто­матическое  регулирование   производительности воздуходувных агрегатов по величине растворенного кислорода в сточной воде.

В напорных воздуховодах следует контролировать давление и температуру воздуха (местное измерение).

 

ОЧИСТНЫЕ СООРУЖЕНИЯ

 

7.27. Работу механизированных решеток следует автоматизировать по заданной программе или по максимальному перепаду уровня жидкости до и после решетки.

7.28. В песколовках при высоком уровне автома­тизации очистных сооружений следует автоматизи­ровать удаление песка по заданной программе, уста­навливаемой при эксплуатации.

7.29. В первичных отстойниках (радиальных или горизонтальных) следует автоматизировать перио­дический вы пуск осадка поочередно из каждого отстойника по заданным программе или уровню осадка с учетом пуска скребковых механизмов.

7.30. В усреднителях необходимо контролировать на выходе величину рН или другие параметры, требуемые по технологии.

7.31. В сооружениях, в которых используется сжатый воздух (усреднителях, аэрируемых песко­ловках, преаэраторах и биокоагуляторах), следует контролировать расход воздуха.

7.32. В аэротенках следует контролировать расхо­ды иловой смеси, активного ила и воздуха на каж­дой секции, а при высоком уровне автоматиза­ции следует регулировать подачу воздуха по ве­личине растворенного кислорода в сточной воде.

7.33. В высоконагружаемых биофильтрах следует контролировать расход поступающей и рециркуляционной воды.

7.34. Во вторичных отстойниках следует автома­тизировать поддержание заданного уровня ила, контролировать работу илососов.

7.35. В илоуплотнителях следует автоматизиро­вать выпуск уплотненного ила по заданным про­грамме или уровню ила.

7.36. В метантенках необходимо автоматизиро­вать поддержание заданной температуры осадка внутри метантенка, контролировать температуру осадка внутри метантенка, уровень загрузки, расходы поступающего осадка, пара и газа, давление па­ра и газа.

7.37. На вакуум-фильтрах и фильтр-прессах сле­дует автоматизировать дозирование подаваемых реагентов, контролировать уровень осадка в корыте вакуум-фильтра, разрежение в ресивере, давление сжатого воздуха, уровень воды в ресивере.

7.38. В сточной воде после контакта с хлором следует контролировать концентрацию остаточно­го хлора.

7.39. Автоматизацию технологических процессов обработки производственных сточных вод и необходимый объем контроля следует принимать по данным научно-исследовательских организаций.

 

8. ТРЕБОВАНИЯ К СТРОИТЕЛЬНЫМ РЕШЕНИЯМ

И КОНСТРУКЦИЯМ ЗДАНИЙ И СООРУЖЕНИЙ

 

ГЕНПЛАН И ОБЪЕМНО ПЛАНИРОВОЧНЫЕ

РЕШЕНИЯ

 

8.1. Выбор площадок для строительства соору­жений канализации, планировку, застройку и благо­устройство их территории следует выполнять в соот­ветствии с технологическими требованиями, указаниями СНиП II-89-80 и общими требованиями СНиП 2.04.02-84.

Планировочные отметки площадок канализа­ционных сооружений и насосных станций, размещае­мых на прибрежных участках водотоков и водо­емов, надлежит принимать не менее чем на 0,5 м вы­ше максимального горизонта паводковых вод с обеспеченностью 3 % с учетом ветрового нагона воды и высоты наката ветровой волны, определяе­мой согласно СНиП 2.06.04-82.

8.2. Территория очистных сооружений канали­зации населенных пунктов, а также очистных соору­жений канализации промышленных предприятий, располагаемых за пределами промышленных площадок, во всех случаях должна быть ограждена. Ог­раждение следует предусматривать в соответствии с Указаниями по проектированию ограждений и участков предприятий, зданий и сооружений", утвержденными Госстроем СССР. Тип ограждения необходимо выбирать с учетом местных условий. В необходимых случаях для отдельных сооружений следует предусматривать ограждения в соответствии с правилами техники безопасности. Поля фильтрации допускается не ограждать.

8.3. Объемно-планировочные и конструктивные решения зданий и сооружений систем канализации надлежит выполнять согласно   СНиП II-90-81, СНиП 2.04.02-84 и указаниям настоящего раздела.

8.4. Здания и сооружения канализации следует принимать не ниже II степени огнестойкости и относить ко II классу ответственности, за исклю­чением иловых площадок, полей фильтрации, биоло­гических прудов, регулирующих емкостей, канали­зационных сетей и сооружений на них, которые следует относить к III классу ответственности и степень огнестойкости которых не нормируется.

Огнестойкость конструкций отдельно стоящих емкостных сооружений, не содержащих жидкостей с пожароопасными или пожаровзрывоопасными примесями, не ограничивается.

8.5. По пожарной безопасности процессы перекач­ки и очистки бытовых сточных вод относятся к категории Д. Категория пожарной опасности процес­сов перекачки и очистки производственных сточных вод, содержащих легковоспламеняющиеся и взрывоопасные вещества, устанавливается в зависимости от характеры этих веществ.

8.6. На сооружениях канализации необходимо предусматривать бытовые помещения, состав кото­рых определяется в зависимости от санитарной характеристики производственных процессов со­гласно СНиП II-92-76.

Санитарная характеристику производственных процессов на сооружениях канализации населенных пунктов принимается по табл. 65.

 

Таблица 65

 

Производственные процессы на сооружениях канализации населенных пунктов

Группа санитарной характеристики производственных процессов

 

Работы:

на очистных сооружениях, на­сосных станциях по перекачке сточных вод, сетях канализации, в лабораториях

 

 

IIIв

в хлораторных и на складах хлора

IIIа

в воздуходувных станциях и в ремонтных мастерских

Iв

в аппарате управления

 

Iа

 

Примечание. Работу инженерно-технических работ­ников на канализационных сооружениях надлежит относить к группам производственных процессов тех участков, ко­торые они обслуживают.

 

8.7. Работы на сооружениях биологической очист­ки производственных сточных вод по санитарной характеристике приравниваются к работам на очист­ных сооружениях городской канализации.

Санитарную характеристику работ на сооруже­ниях механической, химической и других методов очистки производственных сточных вод следует принимать в зависимости от состава сточных вод и метода очистки.

Данные для проектирования естественного и искусственного освещения производственных помеще­ний следует принимать согласно СНиП 2.04.02-84.

8.8. Блокирование в одном здании различных по назначению производственных и вспомогатель­ных помещений следует производить во всех случаях, когда это не противоречит условиям технологического процесса, санитарно-гигиеническим и противопожарным требованиям, целесообразно по условиям планировки участка и технико-экономическим соображениям.

Блокировать прямоугольные емкости сооруже­ний следует во всех случаях, когда это целесообраз­но по условиям технологического процесса и конструктивным соображениям.

8.9. Внутреннюю отделку хозяйственных, адми­нистративных, лабораторных и других помещений в зданиях систем канализации следует назначать согласно СНиП 2.04.02-84, производственных помещений — по табл. 66, бытовых помещений — соглас­но СНиП II-92-76.

8.10. Расчет конструкций канализационных емко­стных сооружений надлежит выполнять согласно СНиП 2.04.02-84.

8.11. Антикоррозионная защита строительных конструкций зданий и сооружений должна быть предусмотрена  согласно    СНиП II-28-73* и СНиП 2.04.02-84.

 

ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ

 

8.12. Необходимый воздухообмен в производст­венных помещениях надлежит, как правило, рассчи­тывать по количеству вредных выделений от обору­дования, арматуры и коммуникаций. Количество вредных выделений следует принимать по данным технологической части проекта.

При отсутствии таких данных следует использо­вать данные натурных обследований аналогичных действующих сооружений. Для сооружений, кото­рым нет аналогов, допускается рассчитывать количество воздуха по кратности воздухообмена по табл. 67.

 


Таблица 66

 

 

Здания и помещения

Отделочные работы

 

 

стены

потолки

полы

 

1. Здания решеток

 

 

Штукатурка кирпичных стен. Панель из глазурованной плитки высотой 1,8 м от пола. Выше панели — окраска влагостойкими красками

 

 

Окраска влагостойкими красками

 

Керамическая плитка

 

2. Биофильтры

 

 

Расшивка швов панельных стен. Штукатурка кирпич­ных стен. Окраска влагостойкими красками

 

 

То же

 

Цементный пол

 

3. Камера управления метан­танков; распределительная камера; насосные станции

 

 

Штукатурка кирпичных стен. Окраска влагостойкими краской. Затирка железобетонных стен. Окраска клеевыми красками

 

То же. Клеевая окраска

 

То же

 

4. Цех обезвоживания осадка

 

 

Расшивка швов панельных стен. Штукатурка кирпич­ных стен. Окраска влагостойкими красками

 

 

Окраска влаго­стойкими красками

 

    

 

5. Воздуходувная станция:

     машинный зал

 

 

Расшивка швов панельных стен. Штукатурка кирпич­ных стен. Окраска панели масляной краской на высоту 1,5 м. Окраска клеевыми красками выше панели

 

Клеевая побелка

 

Керамическая плитка (бетон­ный поп на монтажной площад­ке)

    

     подсобные помещения

 

 

Кирпичная кладка с подрезкой швов. Затирка или расшивка швов панелей. Известковая побелка

 

 

Известковая по­белка

 

Цементный пол

 

6. Фильтры

 

 

Штукатурка кирпичных стен. Окраска влагостойкими красками

 

 

То же

 

7. Насосные станции:

     машинный зал

 

 

Штукатурка кирпичных стен в надземной части. В за­глубленной части затирка бетонных поверхностей цементным раствором. Окраска панелей масляной краской на высоту 1,5 м. Окраска клеевыми красками выше панели

 

 

Клеевая побелка

 

Керамическая плитка

 

     помещения над приемным резервуаром

 

 

Штукатурка кирпичных стен. Затирка бетонных стен подземной части цементным раствором. Окраска влагостойкими красками

 

 

Окраска влаго­стойкими красками

 

Цементный пол


 

Таблица 67

 

 

Здания и помещения

Температура воздуха для проектирования

Кратность

воздухообмена в 1 ч

 

систем отопления, °С

приток

вытяжка

 

1. Канализационные насосные станции (машинные залы) для перекачки:

а) бытовых и близких к ним по составу производственных сточ­ных вод и осадка

 

 

 

 

5

 

 

 

По расчету на удаление теплоизбытков, но не менее 3

 

б) производственных взрывоопасных сточ­ных вод

 

 

5

 

См. примеч. 2

 

2. Приемные резервуары и помещения решеток на­сосных станций для пере­качки:

а) бытовых и близких к ним по составу производственных сточ­ных вод и осадка

 

 

 

 

5

 

 

 

5

 

 

 

5

 

б) производственных агрессивных или взрывоопасных сточ­ных вод

 

 

5

 

См. примеч. 2

 

3. Воздуходувная станция

 

 

5

 

По расчету на удаление теплоизбытков

 

 

4. Здания решеток

 

 

5

 

5

 

5

 

5. Биофильтры (аэро­фильтры) в зданиях

 

 

См. примеч. 3

 

По расчету на удаление влаги

 

6. Аэротенки в зданиях

 

 

То же

 

То же

 

7. Метантенки:

а) насосная станция

 

 

5

 

 

12

 

 

12

 

 

плюс аварийная 8-кратная, необходимость которой определяется проектом

 

 

б) инжекторная, газо­вый киоск

 

 

5

 

12

 

12

 

8.      Цех механического обез­воживания (помещения вакуум-фильтров и бункерное отделение)

9.       

 

16

 

По расчету на влаговыделение

 

9. Реагентное хозяйство для приготовления раствора:

а) хлорного железа, сульфата аммония, едкого натра, хлор­ной извести

 

 

 

 

16

 

 

 

б

 

 

 

6

 

б) известкового молока, суперфосфата, аммиачной селитры, соды кальцинирован­ной, полиакриламида

 

 

16

 

3

 

3

 

10. Склады:

а) бисульфита натрия

 

 

5

 

6

 

б

 

б) извести, суперфосфа­та, аммиачной селитры

(в таре), сульфа­та аммония, соды кальцинированной, полиакриламида

 

 

5

 

3

 

3

 

Примечания: 1. При наличии в производственных помещениях обслуживающего персонала температура воз­духа а них должна быть не менее 16 °С.

2. Воздухообмен следует принимать по расчету. При от­сутствии данных о количестве вредностей, выделяющихся в воздух помещений, допускается определять количество вентиляционного воздуха по кратности воздухообмена на основании ведомственных норм основного производст­ва, от которого поступают сточные воды.

3. Температуру воздуха в зданиях биофильтров (аэро­фильтров) и аэротенков следует принимать не менее чем на 2 °С выше температуры сточной воды.

 

8.13. В отделении решеток и приемных резервуа­ров удаление воздуха необходимо предусматривать в размере 1/3 из верхней зоны и 2/3 из нижней зоны с удалением воздуха из-под перекрытий каналов и резервуаров. Кроме того, необходимо предусмат­ривать отсосы от дробилок.

 

9. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ

К СИСТЕМАМ КАНАЛИЗАЦИИ

В ОСОБЫХ ПРИРОДНЫХ

И КЛИМАТИЧЕСКИХ УСЛОВИЯХ

 

СЕЙСМИЧЕСКИЕ РАЙОНЫ

 

9.1. Требования настоящего подраздела должны выполняться при проектировании систем канализа­ции для районов сейсмичностью 7—9 баллов допол­нительно к требованиям СНиП 2.04.02-84.

9.2. При проектировании канализации промышленных предприятий и населенных пунктов, распо­ложенных в сейсмических районах, надлежит предусматривать мероприятия, исключающие затопление территории сточными водами и загрязнение под земных вод и открытых водоемов в случае повреж­дения канализационных трубопроводов и соору­жений.

9.3. При выборе схем канализации надлежит пре­дусматривать децентрализованное размещение кана­лизационных сооружений, если это не вызовет зна­чительного усложнения и удорожания работ, а так­же следует принимать разделение технологических элементов очистных сооружений на отдельные сек­ции.

9.4. При благоприятных местных условиях сле­дует применять методы естественной очистки сточ­ных вод.

9.5. Заглубленные здания необходимо распола­гать на расстоянии не менее 10 м от других сооружений и не менее 12Dext (Dext — наружный диаметр трубопровода) от трубопроводов.

9.6. В насосных станциях в местах присоединении трубопроводов к насосам необходимо предусматривать гибкие соединения, допускающие угловые и продольные взаимные перемещения концов труб.

9.7. Для предохранения территории канализуемого объекта от затопления сточными водами, а также загрязнения подземных вод и открытых водоемов (водотоков) при аварии необходимо от сети устраивать перепуски (под напором) в другие сети или аварийные резервуары без сброса в водные объекты.

9.8. Для коллекторов и сетей безнапорной и на­порной канализации надлежит принимать все виды труб с учетом назначения трубопроводов, требуемой прочности труб, компенсационной способности сты­ков, а также результатов технико-экономических расчетов, при этом глубина заложения всех видов труб в любых грунтах не нормируется.

9.9. Прочность канализационных сетей необходи­мо обеспечивать выбором материала и класса прочности труб на основании статического расчета с учетом дополнительной сейсмической нагрузки, определяемой также расчетом.

9.10. Компенсационные способности стыков необходимо обеспечивать применением гибких стыко­вых соединений, определяемых расчетом.

9.11. Проектирование напорных трубопроводов следует производить согласно СНиП 2.04.02-84.

9.12. Не рекомендуется прокладывать коллекто­ры в насыщенных водой грунтах (кроме скальных. полускальных и крупнообломочных), в насыпных грунтах независимо от их влажности, а также на участках со следами тектонических нарушений.

 

ПРОСАДОЧНЫЕ ГРУНТЫ

 

9.13. Системы канализации, подлежащие строи­тельству на просадочных, засоленных и набухающих грунтах, надлежит   проектировать   согласно СНиП 2.02.01-83 и СНиП 2.04.02-84.

9.14. При грунтовых условиях II типа по просадочности следует применять при просадках грунтов от собственной массы:

а) до 20 см для самотечных трубопроводов — железобетонные и асбестоцементные безнапорные, керамические трубы; то же, для напорных трубо­проводов — железобетонные напорные, асбестоцементные, полиэтиленовые трубы;

б) свыше 20 см для самотечных трубопрово­дов — железобетонные напорные, асбестоцементные напорные, керамические трубы; то же для напор­ных трубопроводов — полиэтиленовые, чугунные трубы.

Допускается применение для напорных трубопроводов стальных труб на участках при возможной просадке грунта от собственной массы до 20 см и рабочем давлении свыше 0,9 МПа (9 кгс/см2), а также при возможной просадке свыше 20 см и рабочем давлении свыше 0,6 МПа (6 кгс/см2).

Требования к основаниям под безнапорные трубопроводы в грунтовых условиях I и II типов по просадочности приведены в табл. 68.

 

Таблица 68

 

Тип грунта по просадочности

Характеристи­ка территории

Требования к основаниям

под трубопроводы

 

I

 

 

Застроенная

Незастроен­ная

 

 

Без учета просадочности

То же

 

II

(просадка до 20 см)

 

 

Застроенная

 

Незастроенная

 

Уплотнение, грунта и устройство поддона

Уплотнение грунта

 

 

II

(просадка св. 20 см)

 

 

Застроенная

 

Незастроен­ная

 

Уплотнение грунта и устройство поддона

Уплотнение грунта

 

 

Примечания: 1. Незастроенная территория — тер­ритория. на которой в ближайшие 15 лет не предусматривается строительство населенных пунктов и объектов народного хозяйства.

2. Уплотнение грунта трамбование грунта основания на глубину 0,3 м до плотности сухого грунта не менее 1,65 тс/м3 на нижней границе уплотненного слоя.

3. Поддон водонепроницаемая конструкция с бортами высотой 0,1—0,15 м, на которую укладывается дренаж­ный слой толщиной 0,1 м.

4. Требования к основаниям под трубопроводы следует уточнять в зависимости от класса ответственности зданий и сооружений, расположенных вблизи трубопровода.

5. Для углубления траншей под стыковые соединения трубопроводов следует применять трамбование грунта.

 

9.15. Стыковые соединения железобетонных, асбестоцементных, керамических, чугунных, поли­этиленовых труб на просадочных грунтах со II ти­пом грунтовых условий должны быть податливыми за счет применения эластичных заделок.

9.16. При возможной просадке от собственной массы грунта свыше 10 см условие, при котором сохраняется герметичность безнапорного трубопро­вода вследствие горизонтальных перемещении грун­та, определяется выражением

 

                                                (115)

 

где Dlim ~ допустимая осевая компенсационная способность стыкового соединения труб, см, принимаемая равной полови­не глубины щели раструбных труб или длины муфты стыковых соединений;

Dk — необходимая из условия воздействия горизонтальных перемещений грунта, возникающих при просадках его от собственной массы, компенсационная способность стыкового соединения;

Ds — величина оставляемого при строи­тельстве зазора между концами труб в стыке, принимаемая равной 1 см. Необходимая из условия воздействия горизон­тальных перемещений компенсационная способ­ность стыкового соединения Dk, см, определяется по формуле

 

                                               (116)

 

где  Kw коэффициент условий работы, прини­маемый равным 0,6;

lsec длина секции (звена) трубопровода, см;

e - относительная величина горизонтально­го перемещения грунта при просадке его от собственной массы;

Dext наружный диаметр трубопровода, м;

Rgr — условный радиус кривизны поверх­ности грунта при просадке его от соб­ственной массы, м.

Относительная величина горизонтального переме­щения e, м, определяется по формуле

 

                                                    (117)

 

где   Spr просадка грунта от собственной массы, м;

lpr длина криволинейного участка просад­ки грунта, м, от собственной массы, вычисляемая по формуле

 

                            (118)

 

здесь Hpr величина просадочной толщи, м;

Kb — коэффициент, принимаемый равным для однородных толщ грунтов — 1, для неоднородных —1,7;

tgb угол распространения воды в стороны от источника замачивания, принимае­мый равным для супесей и лессов 35°, для суглинков и глин менее 50°.

Условный радиус кривизны поверхности грунта Rgr, м, вычисляется по формуле

 

                                       (119)

 

ВЕЧНОМЕРЗЛЫЕ ГРУНТЫ

 

Общие указания

 

9.17. При проектировании оснований под сети и сооружения следует руководствоваться принци­пами I или II использования вечномерзлых грунтов согласно СНиП II-18-76.

9.18. Использование грунтов оснований по прин­ципу I следует принимать в случаях, если:

грунты характеризуются значительными осадка ми при оттаивании;

оттаивание грунтов вокруг трубопровода влияет на устойчивость расположенных вблизи зданий и сооружений, строящихся с сохранением основания в мерзлом состоянии.

9.19. Использование грунтов оснований по принципу II следует принимать в случаях, если:

грунты характеризуются незначительными осадками на всю расчетную глубину оттаивания;

здания и сооружения по трассе трубопроводов расположены на расстоянии, исключающем их тепловое влияние, или строятся с допущением оттаи­вания вечномерзлых грунтов в их основании.

9.20. В расчетных расходах следует учитывать холостой сброс воды для предохранения сетей от замерзания, величина которого определяется тепло­техническим расчетом, но допускается не более 20 % основного расхода.

 

Коллекторы и сети

 

9.21. Систему канализации надлежит проектиро­вать неполную раздельную (с поверхностным от­ведением дождевых вод), при этом предусматри­вать максимально возможное совместное отведе­ние бытовых и производственных сточных вод.

9.22. Способы прокладки трубопроводов в зави­симости от объемно-планировочных решении за­стройки, мерзлотно-грунтовых условий по трассе, теплового режима трубопроводов и принципа ис­пользования вечномерзлых грунтов в качестве основания следует принимать:

подземный — в траншеях или каналах (проход­ных, попупроходных, непроходных);

наземный — на подсыпке с обвалованием;

надземный — по опорам, эстакадам, мачтам и др. с устройством пешеходных переходов в насе­ленных пунктах при расположении на  низких опорах.

9.23. При проектировании способа прокладки трубопроводов и подготовки оснований под них следует руководствоваться СНиП 2.04.02-84.

9.24. Прокладка сетей канализации совместно с сетями хозяйственно-питьевого водопровода до­пускается только в том случае, когда под кана­лизационные трубы выделен отдельный отсек канала, обеспечивающий отвод сточных вод в ава­рийный период.

9.25. При трассировке сетей канализации надле­жит по возможности предусматривать присоедине­ние объектов с постоянным выпуском сточных вод к начальным участкам сети.

9.26. На выпусках из зданий следует предусмат­ривать комбинированную изоляцию труб (тепло-аккумулирующую и тепловую).

9.27. Расстояние от центра смотровых колодцев до зданий и сооружений, возводимых по первому принципу строительства, надлежит принимать не менее 10 м.

9.28. Материал труб для напорных сетей канали­зации следует принимать как для водопроводных сетей.

Для самотечных сетей канализации необходимо применять трубы полиэтиленовые и чугунные с ре­зиновой уплотнительной манжетой.

9.29. Уклон тоннелей или каналов должен обеспе­чивать выпуск аварийных утечек в систему канали­зации.

При плоском рельефе местности для удаления аварийных утечек допускается предусматривать насосные станции.

9.30. Для исключения возможного нарушения вечномерзлого состояния грунтов в основании зданий выпуски канализации следует проклады­вать в подземных каналах или надземно для зданий с проветриваемыми подпольями.

9.31. Устройство открытых лотков в колодцах на сетях канализации не допускается. Для чистки труб следует предусматривать закрытые ревизии.

9.32. Для предохранения от замерзания трубо­проводов канализации следует предусматривать:

дополнительный сброс в сеть канализации теплой воды (отработанной или специально подогретой);

сопровождение участков трубопроводов, в наибольшей степени подверженных опасности замерза­ния, греющим кабелем или теплопроводом.

Выбор мер должен быть обоснован технико-экономическим расчетом.

 

Очистные сооружения

 

9.33. Строительные конструкции зданий и соору­жений надлежит принимать согласно СНиП II-18-76 и СНиП 2.04.02-84.

9.34. Условия спуска сточных вод в водные объекты должны удовлетворять требованиям Пра­вил охраны поверхностных вод от загрязнения сточ­ными водами" и Правил санитарной охраны прибрежных вод морей", при этом необходимо учитывать низкую самоочищающую способность водных объектов, их полное перемерзание или резкое сокращение расходов в зимний период.

9.35. Для очистки сточных вод могут быть при­менены биологический, биолого-химический, фи­зико-химический методы. Выбор метода очистки должен быть определен его технико-экономически­ми показателями, условиями сброса сточных вод в водные объекты, наличием транспортных связей и степенью освоения района, типом населенного места (постоянный, временный), наличием реаген­тов и т. п.

9.36. При выборе метода и степени очистки сле­дует учитывать температуру сточных вод, холостые сбросы водопроводной воды, изменения концентра­ции загрязняющих веществ за счет разбавления.

Среднемесячную температуру сточных вод Tw, °С, при подземной прокладке канализационной сети следует определять по формуле

 

                                                (120)

 

где Twot среднемесячная температура воды в во­доисточнике, °С;

y1 эмпирическое число, зависящее от степе­ни благоустройства населенного места. Для районов застройки, не имеющих централизованного горячего водоснаб­жения, y1 = 4—5; для районов, имеющих систему централизованного горячего во­доснабжения в отдельных группах зда­ний, y1 = 79; для районов, где здания оборудованы централизованным горя­чим водоснабжением, y1 = 10—12.

9.37. Расчетную температуру сточных вод в месте выпуска следует определять теплотехническим рас­четом.

9.38. Биологическую очистку сточных вод надле­жит предусматривать только на искусственных сооружениях.

9.39. Обработку осадка следует осуществлять. как правило, на искусственных сооружениях.

9.40. Намораживание осадка с последующим его оттаиванием надлежит предусматривать в специаль­ных накопителях при производительности очистных сооружений до 3—5 тыс. м3/сут. Высота слоя намораживания осадка не должна превышать глубину сезонного оттаивания.

9.41. Размещение очистных сооружении следует предусматривать, как правило, в закрытых отапли­ваемых зданиях  при производительности до 3—5 тыс. м3/сут. При большей производительности и соответствующих теплотехнических расчетах очистные сооружения могут располагаться на открытом воздухе с обязательным устройством над ними шатров, проходных галерей и т. п. При этом необходи­мо предусматривать мероприятия по защите сооружений, механических узлов и устройств от обледе­нения.

9.42. Очистные сооружения следует применять высокой индустриальной сборности или заводской готовности, обеспечивающие минимальное привлече­ние человеческого труда при простом управлении: тонкослойные отстойники, многокамерные аэротенки, флототенки, аэротенки с высокими дозами ила, флотационные илоотделители, аэробные стабилиза­торы осадка и т. п.

9.43. Для очистки небольших количеств сточных вод следует применять установки:

аэрационные, работающие по методу полного окисления (до 3 тыс. м3/сут);

аэрационные с аэробной стабилизацией избыточ­ного активного ила (от 0,2 до 5 тыс. м3/сут);

физико-химической очистки (от 0,1 до 5 тыс. м3/сут).

9.44. Установки  физико-химической  очистки предпочтительней для вахтовых и временных поселков, профилакториев и населенных пунктов, отли­чающихся большой неравномерностью поступления сточных вод, низкой температурой и концент­рацией загрязняющих веществ.

9.45. Для физико-химической очистки сточных вод допускается применять следующие схемы:

I — усреднение, коагуляция, отстаивание, фильтрование, обеззараживание;

II — усреднение, коагуляция, отстаивание, фильт­рование, озонирование.

Схема I обеспечивает снижение БПКполн от 180 до 15 мг/л, схема II — от 335 до 15 мг/л за счет окисления озоном оставшихся растворенных орга­нических веществ с одновременным обеззаражива­нием сточных вод.

9.46. В качестве реагентов следует применять сернокислый алюминий с содержанием активной части не менее 15 %, активную кремнекислоту (АК), кальцинированную соду, гипохлорит натрия, озон.

В схеме I сода и озон исключаются.

9.47. Дозы  реагентов  надлежит принимать, мг/л:  сернокислого  безводного  алюминия — 110100, АК — 1015, хлора 5 (при подаче в отстойник) или 3 (перед фильтром), озона 5055, соды 67.

 

ПОДРАБАТЫВАЕМЫЕ ТЕРРИТОРИИ

 

Общие указания

 

9.48. При проектировании наружных сетей и со­оружений канализации на подрабатываемых терри­ториях необходимо учитывать дополнительные воз­действия от сдвижений и деформаций земной поверхности, вызываемых проводимыми горными вы­работками.

Назначение мероприятий по защите от воздейст­вий горных выработок следует производить с уче­том сроков их проведения под проектируемыми сетями и сооружениями согласно СНиП II-8-78 и СНиП 2.04.02-84.

9.49. На подрабатываемых территориях не допу­скается размещение попей фильтрации.

9.50. Мероприятия по защите безнапорных тру­бопроводов канализации от воздействий дефор­мирующегося грунта должны обеспечивать сохра­нение безнапорного режима, герметичность стыковых соединений, прочность отдельных секций.

9.51. При выборе мероприятий по защите и оп­ределении их объемов в разрабатываемом на ста­дии проектирования горно-геологическом обосно­вании должны быть дополнительно указаны:

сроки начала подработок площадки расположе­ния сетей и сооружений канализации, а также от­дельных участков внеплощадочных трубопрово­дов;

места пересечений трубопроводами линий выхо­да на поверхность (под наносы) тектонических нарушений, границ шахтных полей и охранных целиков;

территории возможных образований на земной поверхности крупных трещин с уступами и про­валов.

 

Коллекторы и сети

 

9.52. Ожидаемые деформации земной поверх­ности для проектирования защиты безнапорных трубопроводов канализации должны быть заданы:

на площадях с известным на момент разработки проекта положением горных выработок — от прове­дения заданных очистных выработок;

на площадях, где планы проведения выработок неизвестны, — от условно задаваемых выработок по одному наиболее мощному из намечаемых к отра­ботке пластов или выработок на одном горизонте;

в местах пересечений трубопроводами границ шахтных полей, охранных целиков и пиний выхода на поверхность тектонических нарушений — сум­марными от выработок в пластах, намечаемых к отработке в ближайшие 5 лет.

При определении объемов мероприятий по защи­те необходимо принимать максимальные значения ожидаемых деформаций с учетом коэффициента перегрузки согласно СНиП II-8-78.

9.53. Для безнапорной канализации следует при­менять керамические, железобетонные, асбестоцементные и пластмассовые трубы, а также железо­бетонные потки или каналы.

Выбор типа труб необходимо производить в зави­симости от состава сточных вод и горно-геологи­ческих условий строительной площадки или трассы трубопровода.

9.54. Для сохранения безнапорного режима в тру­бопроводе уклоны участков при проектировании продольного профиля необходимо назначать с уче­том расчетных неравномерных оседаний (наклонов) земной поверхности исходя из условия

 

                                                    (121)

 

где  ip —необходимый для сохранения безнапор­ного режима работы строительный уклон трубопровода;

 — наименьший допустимый уклон трубопровода при расчетном наполнении;

igr — расчетные наклоны земной поверхности на участке трубопровода, принимаемые согласно п. 9.52.

9.55. При невозможности обеспечить необходимый уклон безнапорного трубопровода, например, по условиям рельефа местности или в условиях за­данной разности отметок начальной и конечной то­чек проектируемого трубопровода, а также у гра­ниц шахтных полей, охранных целиков и тектони­ческих нарушений следует:

трассу трубопровода предусматривать в направ­лении больших уклонов или в зоне меньших ожи­даемых наклонов земной поверхности;

увеличить диаметр трубопровода;

уменьшить расчетное наполнение трубопровода; предусматривать станции перекачки сточных вод в тот же или другой трубопровод за пределами зо­ны неблагоприятных наклонов земной поверхности.

Станции перекачки сточных вод следует соору­жать при строительстве трубопровода, если горные работы намечены на ближайшие 5 лет, и непосред­ственно перед горными работами при более позд­них сроках их осуществления.

9.56. Стыковые соединения труб следует преду­сматривать податливыми, работающими как ком­пенсаторы, за счет применения эластичных заде­лок.

Условие, при котором сохраняется герметичность стыковых соединений безнапорного трубопровода, определяется выражением

 

                                                (122)

 

где Dlim — допускаемая  (нормативная)   осевая компенсационная способность податли­вого стыкового соединения труб, прини­маемая для труб, см:

керамических — 4;

железобетонных раструбных — 5;

асбестоцементных муфтовых 6;

Dk — необходимая осевая компенсационная способность стыка, см, определяемая расчетом в зависимости от ожидаемых деформаций земной поверхности и гео­метрических размеров принимаемых труб;

Ds — величина оставляемого при строитель­стве зазора между концами труб в стыке, см, принимаемая в размере не менее 20 % значения Dlim.

9.57. Несущая способность поперечного сечения трубы при растяжении Pp должна удовлетворять условию

 

                                                (123)

 

где Pe максимальное продольное усилие в от­дельной секции трубы, вызываемое гори­зонтальными деформациями грунта;

Pi максимальное продольное усилие в от­дельной секции трубы, вызываемое появлением уступа на земной поверхности.

9.58. При несоблюдении условий (122) или (123) необходимо:

применить трубы меньшей длины или другого типа;

изменить трассу трубопровода, проложив ее в зоне меньших ожидаемых деформаций земной по­верхности;

повысить несущую способность трубопровода устройством в его основании железобетонной постели (ложа) с разрезкой на секции податливыми швами.

9.59. Разность отметок входного и выходного колодцев дюкера следует назначать с учетом неравномерных оседаний земной поверхности, вызываемых проведением очистных горных выработок.

9.60. Расстояние между канализационными ко­лодцами на прямолинейных участках трубопрово­дов канализации в условиях подрабатываемых территорий необходимо принимать не более 50 м.

9.61. При необходимости пересечения трубопро­водом канализации площадей, где возможно обра­зование локальных трещин с уступами или провалов, следует предусматривать напорные участки и надземную ее прокладку.

 

Очистные сооружения

 

9.62. Сооружения канализации следует проекти­ровать, как правило, по жестким и комбинированным конструктивным схемам. Размеры в плане жестких блоков, отсеков должны определяться расчетом в зависимости от величин деформаций земной поверхности и наличия практически осуществимых конструктивных мер защиты, в том числе деформационных швов необходимой компенсационной способности.

9.63. Податливые конструктивные схемы допу­скаются только для сооружений канализации ти­па открытых емкостей, не имеющих стационарного оборудования.

9.64. Сооружения канализации, имеющие ста­ционарное оборудование, следует проектировать только по жестким конструктивным схемам.

9.65. Сблокированные сооружения канализации различного функционального назначения должны быть разделены между собой деформационными швами.

9.66. Для задержания отбросов следует применять подвижные решетки с регулируемым углом наклона и решетки-дробилки.

9.67. В качестве оросителей биофильтров реко­мендуется применять разбрызгиватели (спринклеры) и движущиеся оросители.

При применении реактивных оросителей фунда­менты-стояки необходимо отделять от сооружений водонепроницаемым деформационным швом.

9.68. Коммуникационные системы не должны иметь жесткой связи с сооружениями.

Уклоны лотков и каналов следует назначать с учетом расчетных деформаций земной поверхности.

 

 

 

Изменение СНиП 2.04.03-85.

 

Постановлением Госстроя СССР от 28 мая 1986 г. № 70 утверждено и с 1 июля 1986 г. введено в действие раз­работанное Союзводоканалпроектом и представленное Главтехнормированием Госстроя СССР изменение № 1 СНиП 2.04.03—85. «Канализация. Наружные сети и сооружения», ут­вержденного постановлением Госстроя СССР от 21 мая 1985 г. № 71. Текст изменения публикуется ниже.

1. Дополнить пунктом 9.69 следующего содержания: «9.69. Особенности проектирования систем канализации для Западно-Сибирского нефтегазового комплекса приведе­ны в рекомендуемом приложении».

2. Дополнить рекомендуемым приложением следующего содержания:

«Приложение

Рекомендуемое

Особенности проектирования систем канализации

для Западно-Сибирского нефтегазового комплекса

 

Общие указания

 

1. При проектировании способа прокладки трубопрово­дов и подготовки оснований под них надлежит руководст­воваться указаниями СНиП 2.04.02-84.

2. При проектировании сетей и сооружений на вечномерзлых грунтах следует руководствоваться указаниями пп. 9.17—9.47.

3. В районах распространения вечномерзлых грунтов и слабых водонасыщенных грунтов наружные сети канали­зации следует предусматривать, как правило, напорными из стальных труб.

4. При проектировании систем канализации надлежит, как правило, применять сооружения и установки в комплектно-блочном исполнении заводского изготовления по ГОСТ 25298—82.

5. Для очистки сточных вод надлежит применять высокоэффективные интенсивные методы (механическая очистка на тонкослойных отстойниках, двухъярусных отстойниках с пластмассовыми модулями; биологическая очистка в биофильтрах с пластмассовой загрузкой, аэротенках с высоки­ми дозами активного ила; физико-химическая очистка при большой неравномерности поступления сточных вод, их низкой температуре и возможных перерывах в подаче).

6. Для глубокой очистки биологически очищенных сточных вод следует принимать, как правило, фильтровальные установки, в том числе с использованием местных фильт­рующих материалов.

7. Осадок сточных вод при невозможности его утилизации рекомендуется после стабилизации и обеззараживания (тер­мическим или химическим способом) складировать в накопителях.

8. Для обеззараживания очищенных сточных вод следует применять прямой электролиз или раствор гипохлорита натрия, получаемый электролизом  поваренной соли или минерализованной воды.

9. Отвод поверхностных вод (дождевых и талых) надлежит предусматривать, как правило, открытыми водосто­ками с очисткой стока с наиболее загрязненных терри­торий (автобаз, резервуарных парков и т. д.).

10. Технологические процессы перекачки и очистки сточ­ных вод, а также обработки осадка должны быть максимально механизированы и автоматизированы.

11. Сооружения для очистки сточных вод производи­тельностью до 5 тыс. м3/сут следует размещать, как подпи­ло, в отапливаемых зданиях. При большей производи­тельности необходимость размещения сооружений в отап­ливаемых зданиях должна определяться теплотехническим расчетом.

12. При расположении сооружений на открытом воздухе следует предусматривать ветро- и снегозащитные мероприятия (шатры, навесы, перегородки, проходные галереи между зданиями и сооружениями и т. п.), а также за­щиту сооружений, механических узлов и устройств от обледенения.

13. При отсутствии на площадках очистных сооружений открытых емкостей вне помещений ограждение территории допускается не предусматривать.

14. Санитарно-защитные зоны от канализационных сооружений до границ жилой застройки, участков общественных  зданий и предприятий пищевой промышленности надлежит принимать по п. 1.10 минимально допустимыми.

Следует предусматривать мероприятия, обеспечивающие сокращение санитарно-защитных зон (размещение сооружений с подветренной стороны по отношению к жилой застройке и т. п.)».